85. מספר תובנות על Pentax K-1

85. מספר תובנות על Pentax K-1

מידי פעם מתעורר בי הצורך לכתוב על מצלמה חדשה בעלת תכונות ואפיונים מיוחדים: כזאת היא משפחת מצלמות ה- Sony A7  (עליה כתבתי בפוסט מס׳ 45), ה- Leica SL (עליה כתבתי בפוסט מס׳ 71) וה-Sony RX1R (עליה כתבתי בפוסט מס׳ 52). למצלמות אלו מאפיינים יחודיים משלהן ההופכים אותן למיוחדות ושונות ובעלות ערך שימושי רב לחלק מן הצלמים, חובבים ומקצועיים כאחד.

בחודש פברואר 2016 הכריזה Ricoh, בעלת המותג הוותיק Pentax על מצלמה כזו: Pentax K-1. חלק מכם ירימו גבה ויגידו: את מי זה מענין ומי בכלל משתמש כיום במצלמות Pentax? אחרי הכל אין המדובר בניקון, קנון או רחמנא ליצלן סוני, אשר במוצריהם אנו דשים כל העת. ובכן, מסתברות שתי עובדות מענינות: א. יש לפנטקס קהל משתמשים נאמן שמעדיף את הציוד מתוצרתה על פני ציוד המיוצר ע״י יצרנים אחרים ב. למצלמה החדשה מספר תכונות יחודיות ואף על פי כן מחירה  ($1800 לגוף בלבד) נמוך בהרבה ממצלמות מתחרות באותה הקטגוריה: DSLR עם חיישן Full Frame בעל 36MP, אטימה מלאה למים ואבק, GPS ו-WiFi מובנים ובנוסף, ל-K-1 מספר תכונות מענינות נוספות כמו Pixel Shift, תכונה שאסקור בהרחבה בהמשך וכן מייצב אופטי מובנה. כל זה בגוף שמשקלו 1010 גרם כולל סוללות. לצורך גילוי נאות אציין כי כל התרשמותי מבוססת על בדיקות שנעשו ע״י אתרים אחרים ולא (לצערי) על התנסות מעשית שלי.

מבחינת מספר הפיקסלים וגודל החיישן פנטקס K-1 מתחרה ישירות בדגמים הבאים:
(Nikon D-810 (DSLR, 36MP), Sony A7R II (Mirrorless, 42MP ו- (Canon 5DS,5DSR (DSLR, 50MP, אולם כאמור לעיל מחירה נמוך בהרבה מכל המתחרות: דגמי Canon 5DS, DSR נמכרים בכ-$3500,
Nikon D810 ב-$2800 ו-Sony A7R II ב-$3200. K-1 נופלת במעט מן המתחרות במהירות הצילום המירבית: 4.4 מסגרות לשנייה לעומת 5 מסגרות לשנייה לכל המתחרות אולם עולה עליהן בתחום ה- ISO. מספר נקודות המיקוד של K-1 נמוך במובהק מזה של המתחרים, טרם ראיתי דיווחים על איכות המיקוד האוטומטי שלה אולם אם להסיק מן הביצועים בתחום זה של K-3 הקודמת לה לא ברור אם יש למה לצפות וחבל.

מנתוני בדיקות שפורסמו ב- DPReview.com עולה כי K-1 מספקת תחום דינמי מרשים מאד המתחרה היטב בתחום הדינמי של כל המתחרים ובוודאי בזה של דגמי Canon. עם הפעלת מצב Pixel Shift מתקבלות תוצאות טובות יותר מאשר של דגמי פורמט בינוני מסויימים. שימו לב לענין זה: במחיר של $1800 ובמצלמה בפורמט DSLR שאינה גדולה וכבדה מדי K-1 מתחרה מבחינת איכות הדימוי במצלמות בפורמט בינוני שמחירן מתחיל בכ- $9000. התוצאות המוצגות באתר DPReview מרשימות מאד ואני בהחלט מציע לכל מי שסוג העבודה שלו מאפשר הפעלת Pixel Shift (צילום על חצובה, נושאים נייחים: למרות שכבר הוכח שגם נושאים בתנועה אפשריים) לשקול את ה- Pentax K-1 לפני קבלת החלטת רכישה. כמובן ששאלת העדשות היא מהותית, למרות שקיים מגוון יפה של עדשות הן מתוצרת פנטקס והן של יצרנים אחרים למי שברשותו אוסף קיים של עדשות ההחלטה תהיה קשה יותר.

כתבה העוסקת בהתנסות מעשית עם K-1 והשוואה ל-K-3 ניתן לקרוא כאן.

K-1 היא התפתחות הגיונית של הפנטקס K-3, הדומה לה מאד במאפיינים רבים אולם היא בעלת חיישן בגודל APS-C ורק 24MP. באופן אישי, שמתי עין על ה- K-3 כאשר הוכרזה אולם בסופו של דבר העדפתי את אחד הדגמים ממשפחת A-7 של סוני, בעיקר משיקולי גודל ומשקל וכן עקב העובדה שסוג הצילום שלי איננו מאפשר שימוש ב-Pixel Shift כך שתכונה זו לא תוכל לבוא לידי ביטוי בצילומים שלי. כל דגמי פנטקס מבוססים על מסורת ארוכת שנים של מצלמות איכותיות, חלקן אף היו בזמנו להיטי מכירות של ממש כדוגמת ה-K1000, מצלמת סרט היסטורית ממנה נמכרו מעל 3 מליון יחידות בשנים 1976-1997 (אחת מהן באוסף הצנוע שלי). מצלמה מוצלחת מאד נוספת מתוצרת פנטקס היתה Pentax 67, מצלמת סרט בפורמט בינוני וכן אחותה הקטנה יותר בפורמט 6X4.5. בשנים האחרונות היציגה פנטקס מצלמות דיגיטליות בפורמט בינוני, האחרונה שבהן Pentax 645Z בעלת חיישן CMOS עם  51MP בגודל 44X33 מ״מ שמחירה, כ- $9000 הינו 1/3 עד 1/4 ממחירן של מצלמות בפורמט בינוני מתוצרת יצרנים אחרים.

הזכרתי קודם לכן את אחת התכונות המענינות של K-1: היכולת להזיז את חיישן התמונה בזמן החשיפה על מנת לדגום את הנושא מספר פעמים ולשפר באופן משמעותי את איכות הדימוי המתקבל. טכניקה זו, הנקראת Pixel Shift איננה חדשה וקיימת מזה שנים במספר דגמים של מצלמות בפורמט בינוני ואף בפנטקס K-3 וב- Olympus E-M5 II. אולם זאת הפעם הראשונה שיכולת זו מופיעה במצלמת DSLR FF בעלת מספר פיקסלים גבוה.

PS

כיום, בכל המצלמות (למעט המצלמות מתוצרת Sigma המבוססות על חיישני תמונה מרובי שכבות) נוצר הדימוי הצבעוני באמצעות חיישן תמונה חד שכבתי המכוסה במערך מסננים צבעוניים בצבעים אדום, ירוק וכחול. מערך זה, הנקרא מערך Bayer (ע״ש Bryce Bayer, מהנדס בחב׳ Kodak שפיתח אותו בשנת 1976). בשיטה זו לא כל הפיקסלים נחשפים לכל הצבעים ולכן כושר ההפרדה הכולל יורד במידה ניכרת וכן עשויים להופיע רעשים צבעוניים וצורות Moire. לצורך יצירת הדימוי הסופי נחוץ עיבוד ספרתי הנקרא  Demosaicing שמשמעותו השלמת המידע הצבעוני החסר בהתבסס על המידע הקיים. לתהליך זה מספר חסרונות. על מנת לייתר את הצורך בתהליך ה- Demosaicing ניתן לחשוף את החיישן 4 פעמים, כל פעם בהסטה של פיקסל אחד ימינה, למטה, שמאלה ולמטה (ראו באיור שלמעלה) ובכך למעשה לדגום את הנושא 4 פעמים במקום פעם אחת בלבד בצילום רגיל. כתוצאה מהדגימה המרובעת מתקבל דימוי באיכות גבוהה בהרבה מזו המתקבלת בחשיפה אחת. החיסרון: צילום במצב זה מחייב שימוש בחצובה ואינו מומלץ לצילום נושאים בתנועה. מלוא יתרונותיו מתקבלים בצילום Still Life. את ההבדל באיכות הדימוי בין צילום רגיל לבין הפעלת Pixel Shift ב-Pentax K-1 ניתן לראות בברור בתוצאות שהתקבלו ע״י DPReview.com וכן ע״י Imaging-Resource.com. האתר האחרון ערך ל-K-1 בדיקה מקיפה וכן סקירה טכנולוגית מענינת.

SafariScreenSnapz001

חלק מן ההשוואה שנערכה ע״י Imaging-Resource.com בין צילום ב-K-1 במצב רגיל (משמאל) ובמצב Pixel Shift (מימין). ההבדל ניכר מאד לעין. בשימוש בערכי ISO גבוהים השימוש במצב Pixel Shift מאפשר ירידה משמעותית ברמות הרעש.

לסיכום, Pentax K-1 הרשימה אותי כמצלמה איכותית מכל הבחינות, שתתאים לכל מי שזקוק לדימוי איכותי ביותר, כולל בערכי ISO גבוהים, עם אפשרות לקבלת דימויים ברמת הפורמט הבינוני במצב Pixel Shift. חשוב להדגיש שהמצלמה איננה מתאימה לצילום ספורט ולצילום התרחשויות מהירות ביותר והדבר נכון גם לגבי כל המתחרות שלה שנסקרו לעיל. ברמת הרזולוציה הזו הטכנולוגיה, לצערי, עדיין איננה מאפשרת צילום במהירויות גבוהות מאד.

סקירה מקיפה נוספת ל-K-1 תוכלו לקרוא כאן.

סקירה של K-1 עם התייחסות מפורטת לנושא Pixel Shift עם דוגמאות תמצאו כאן.

סקירה מקדימה ל-K-1 עם צילומים איכותיים מאד של המצלמה עצמה תמצאו כאן.

סקירה מענינת של Pixel Shift ב- K-1 עם מסקנות מפתיעות תמצאו כאן.

עדכון 1.7.16: סקירה נרחבת של K-1 תמצאו כאן.

עדכון  7.7.16: ועכשיו יש גם סקירה עם ציון 84 ב- DPreview.com

עדכון 16.9.16: החיישן ב- K-1 זוכה לציון גבוה מאד ב-   DxOMark.

עדכון 23.10.16: סקירה מקיפה על ה- K-1

עדכון 9.2.18: Pentax K-1 II: דגם משופר לדגם המקורי

84. על איכות הציוד ואיכות הצילום

84. על איכות הציוד ואיכות הצילום

הנושא בו עוסק פוסט זה מתבשל אצלי מזה זמן ומקבל חיזוקים כל העת בעקבות התופעה הלא חדשה, אך ההולכת ומתרחבת של אתרים המפרסמים סקירות ״טכנולוגיות״ של ציוד צילום ושמועות כאלו ואחרות על ״מצלמת החלומות״ הבאה מצד אחד ו״המלצות״ של כל מיני מומחים מטעם עצמם המספקים ״תשובות״ לשאלות של מי שאין להם מושג קלוש בצילום: שיטוט קצר בפורומים ובקבוצות פייסבוק העוסקות ב״צילום״, הן בשפת הקודש והן בשפות אחרות מדגים היטב את התופעה.

אין ספק בכך שהדמוקרטיזציה והנגישות של הידע, בכל תחום שהוא, הן תופעות חיוביות לכשעצמן ועשויות, בתנאים הנכונים, לתרום רבות להתפתחות האישית והמקצועית של כל אדם. אולם הקלות הרבה (שימו לב: לא השתמשתי בביטוי ״הבלתי נסבלת״) בה יכול כיום כל אחד לספק ״מידע״ בלתי מבוסס ולעיתים מוטעה לחלוטין לאחרים היא ענין שיש לתת עליו את הדעת.
מהיבט זה, הצילום תמיד היה תחום בעייתי מאחר ומעולם לא נדרשה הסמכה פורמלית כל שהיא על מנת לעסוק בו. במדינת ישראל, כדי לעסוק בתחום הקוסמטיקה נדרשת תעודת הסמכה מטעם משרד התמ״ת. כדי לעסוק בחשמלאות רכב נדרשת הסמכה של משרד התחבורה. כדי לעסוק בצילום לא נדרשת כל הסמכה וכל מי שרכש לעצמו מצלמה וקצת ציוד נלווה יכול להכריז על עצמו כצלם. תארו לעצמכם מצב דומה בתחום הרפואה: מחר הייתי מכריז על עצמי כקרדיולוג מומחה… אחרי הכל יש לי במרתף ביתי מכון צינתורים, המילה האחרונה בתחום. לצורך ההגינות יש לומר שהמצב דומה גם בתחומים נוספים בהם לא נדרשות כל הכשרה והסמכה.

הצילום הדיגיטלי יחד עם עיבוד התמונה הממוחשב שזעזעו את תחום הצילום בתחילת שנות ה-90 של המאה הקודמת יצרו שינויים רבים בתחום, חלקם חיוביים מאד וחלקם שליליים מאד. אחד השינויים הבולטים הוא קיצור ניכר באורך החיים של ציוד הצילום. אם בעבר צלם היה יכול להשתמש בהצלחה באותה המצלמה ובאותן העדשות במשך שנים רבות הרי שכיום כל מצלמה הופכת ל״מיושנת״ ברגע בו נחתה על מדפי החנויות. בשנים הראשונות להופעתו של הצילום הדיגיטלי היתה הצדקה לתופעה זו מאחר והמצלמות הדיגיטליות (גם המקצועיות) הראשונות שיצאו לשוק  לא היו  טובות מספיק מכל הבחינות ובעיקר מבחינת איכות הדימוי שהיה באפשרותן ליצור. אולם, בשנים האחרונות רמת הציוד השתפרה והגיעה לנקודה בה השיפורים מדגם לדגם הינם מינוריים ביותר מבחינת השפעתם על איכות הצילום של מרבית הצלמים. ההתרגשות והמתח המלאכותיים שיוצרים יצרני הציוד לקראת ההופעה הצפוייה של דגם חדש מלובים בהתאמה ע״י אתרי השמועות למיניהם הניזונים מהדלפות מחושבות ומתוכננות מכיוונם של יצרני הציוד. אלה נמצאים בבעיה מסויימת מאחר ואם יכריזו מראש שבתאריך כזה וכזה יוציאו לשוק מצלמה בעלת כך וכך מגפיקסלים מיד יפסקו מכירות הדגם הנוכחי וכולם ימתינו בסבלנות עד להופעת הדגם החדש… לכן נמשך לו משחק השמועות וכולם, כנראה, נהנים לעסוק ולדוש במאפייני המצלמה הבאה ובתאריך ההכרזה הצפוי מאשר לעסוק בצילום עצמו.

אחרי הכל, מהו בעצם צילום טוב? או מהו צילום ״מוצלח״, מונח השגור אצלנו? אני יודע שאני נכנס כאן לשדה מוקשים בנסיוני לענות של שאלות אלו ובכל זאת אקח את הסיכון ואנסה לענות: לעניות דעתי, המבוססת על כ- 40 שנות  ניסיון בתחום, צילום טוב הוא צילום היוצר תגובה קוגניטיבית, חיובית או שלילית אצל הצופה ו/או צילום העומד בדרישות טכניות מסויימות במקרה של צילום מוזמן. הנה, סיכמתי בשורה אחת את כל מה שמנסים ללמוד סטודנטים לצילום במשך 3-4 שנים שנות הכשרה פורמלית במוסדות האקדמיים ובמשך שבועות או חודשים ספורים בקורסים קצרים למיניהם. היכולת לגרום לצופה תגובה קוגניטיבית כנ״ל ו/או ליצור צילום בעל מאפיינים טכניים מוגדרים תהיה מבוססת, בסופו של דבר, על רמת הידע של הצלם ועל רמת הכישרון החזותי שלו והבנתו את השפה הצילומית, ובשום פנים ואופן לא על המאפיינים הטכניים של המצלמה שלו. מספר הפיקסלים של המצלמה, התחום הדינמי של החיישן שבה והצמצם הפתוח המירבי של העדשה שלו לא יקבעו את האיכות  החזותית של הצילום. היכולת להבין איזה סוג ציוד נדרש לביצוע מטלה צילומית מסויימת הוא כמובן חשוב, אחרי הכל לא סתם בזבזתי 27 שנים מחיי בהוראת טכנולוגיה של צילום…  אבל האם עדשה בעלת צמצם פתוח מירבי של 1.2 תבטיח לצלם קבלת צילום טוב יותר מאשר עדשה בעלת צמצם 1.4? אני קורא בפורומים השונים ובפייסבוק ויכוחים לוהטים על שטויות מעין אלו כאשר כל צד מנסה להוכיח באותות ובמופתים שהוא צודק. או, האם מצלמה מתוצרת יצרן ששמו מתחיל באות C תבטיח קבלת צילומים טובים יותר מאשר מצלמה ששם היצרן שלה מתחיל באות N? שמעתי גם על כך שצלמים מסרבים לרכוש רצועה למצלמה ששם יצרן המצלמה שלהם לא מופיע עליה… וכך אנו חשופים כיום לכמות עצומה של צילומים ״לא טובים״ בלשון המעטה שנוצרו ע״י צלמים שהשתמשו במיטב המצלמות, העדשות, האביזרים המתקדמים ותוכנות העיבוד הטובות ביותר עלי אדמות. הקו התחתון הוא שיכולת הראייה וההתבוננות, הבנת האור והכרות עם נושא הצילום חשובים הרבה יותר מאשר סוג המצלמה או העדשה.

אחת התופעות הגורמות לי לחייך היא פרסום צילומים שצולמו ע״י צלמים מוכשרים וידועים, שיצרו לאורך השנים גוף עבודות מרשים מכל הבחינות עם ההערה המתנצלת: ״צולם באייפון״ או ״צולם בסלולרי״. על מה אתם מתנצלים? אם הצילום טוב בעינכם, אתם עומדים מאחוריו והוא ראוי לדעתכם לפרסום, מה זה חשוב אם הוא צולם במצלמה של טלפון סלולרי או ב- DSLR מן הדגם האחרון? אם ברור לכם שרמת הצילום, מן הבחינה החזותית, הטכנית או שתיהן איננה מספקת אל תפרסמו… צלמים לא מעטים שילבו מצלמות של טלפונים סלולריים בעבודתם ומצליחים, באמצעות יכולתם החזותית והבנתם הטכנית להגיע לצילומים ברמה כזאת שרבים אחרים לא יגיעו אליה גם בעזרת המצלמות המשוכללות והיקרות ביותר.

אני בהחלט מזדהה עם הפוסט שפורסם לאחרונה ב-PetaPixel תחת השם:
The 11 Stupidest Things Photographers Say About Gear או ״11 האמרות המטופשות ביותר שצלמים אומרים על ציוד״. כל הדיבורים על ״עדשות אגדתיות״, ״המראה של ניקון״ או ״העדשה בעלת הבוקה הטוב ביותר״ הם חסרי תועלת ותוחלת. צריך להבין מהי איכות אופטית, אבל שום עדשה ״אגדתית״ טובה (ויקרה) ככל שתהיה לא תעשה מאף אחד צלם אגדתי. הבעיה  כפי שמציין הפוסט, היא שחלק גדול מן הצלמים מכור לציוד במקום להיות מכור לצילום (תרגום פרשני שלי לטקסט המקורי).

עוד פוסט היתולי שהצליח להצחיק אותי הוא:
(HOW TO BECOME A PRO LANDSCAPE PHOTOGRAPHER OVERNIGHT (ALMOST שפורסם לאחרונה בבלוג של צלם הנוף ארז מרום. בפוסט מציע הכותב (אורח בבלוג) כיצד יכול כל חובב צילום להפוך בן לילה (כמעט) לצלם ברמה של צלמי National Geographics. מי יודע, אולי אאמץ את ההמלצות שלו?

לסיום, התנצלות: הפוסט פורסם בטעות בתאריך 29.4.16 ומי מקוראי המנויים להודעות מייל קיבלו אותו בגרסה לא סופית. תקבלו אותו שוב בגרסה הסופית בתאריך הפרסום המיועד ואני מתנצל על הטעות.

83. על עדשות ועצמיות 2.0, חלק ז

בחלק השביעי והאחרון של סדרת הפוסטים העוסקת בעדשות ועצמיות אדון בנושא מדדי איכות לעצמיות: MTF ומדד  DxO וכן בשיקולים שונים לבחירה בעצמיות. אסכם בשיתוף מספר מחשבות על עצמיות בכלל.

בפוסטים הקודמים סקרתי את עקרונות הפעולה והמאפיינים המרכזיים של עדשות ועצמיות. בין היתר התייחסתי לרשימה ארוכה למדי של סטיות מהן סובלות עדשות ועצמיות והסברתי שמידת התיקון של הסטיות קובעת את רמת האיכות הכללית של עצמית במשולב עם רמת האיכות המבנית, מכנית ואלקטרונית שלה. נשאלת השאלה כיצד יוכל המשתמש מן השורה להעריך את רמת האיכות של עצמית מסויימת? אני יוצא מתוך נקודת הנחה שמרבית הצלמים מעוניינים לצלם בעצמיות ולא לבלות את הזמן בבדיקות והשוואות ביניהן (למרות שיש להודות שיש ביננו גם כאלו שאין דבר שמלהיב אותם יותר מאשר השוואות כאלו). כאן כמובן באים לעזרתנו כל אותם אתרי אינטרנט, טובים יותר וטובים פחות המבצעים סקירות ובדיקות של עצמיות או ממחזרים בדיקות שנעשו ע״י אתרים אחרים…
אולם על מנת להבין ולהפיק את המירב מסקירות אלו חשוב להבין את העקרונות אותם סקרתי בפוסטים הקודמים.

אתייחס כאן לשני מדדים המקובלים כיום לצורך הערכת רמת האיכות האופטית של עצמית: MTF ומדד  DXO.

MTF הוא מדד טכני מקובל המביא לידי ביטוי את רוב הסטיות האופטיות של עצמית באמצעות מדידה של כמות המידע שנמצא בדימוי שיצרה העצמית לעומת כמות המידע שנמצא בנושא המקורי. לצורך הפשטה ופשטות נעשה שימוש בנושא הכולל קווים שחורים ולבנים בצפיפויות משתנות והתוצאה מתקבלת כמערכת של עקומות שלא לגמרי פשוט להבין את משמעותן אולם אם מבינים את העקרון ניתן להשתמש בכלי זה באופן חזותי כפי שאסביר בהמשך.

מערכת הדמיה "לוקחת" דמות מבוא (הנושא המקורי) והופכת  אותה לדמות מוצא (התמונה או הדימוי). כמשתמשי המערכת, אנו מעונינים לדעת עד כמה השתנתה דמות המוצא בהשוואה לדמות המבוא.
כאשר אנו מעבירים דרך מערכת ההדמייה נושא הכולל תדרים מרחביים משתנים (זהו תאור ״מדעי״ לאוסף של קווים שחורים ולבנים בצפיפות משתנה) נקבל את תגובת התדר המרחבי של מערכת הדמיה המכונה בשם המפוצץ פונקצית העברת האפנון (Modulation Transfer Function) ובקיצור MTF. זוהי פונקציה דו ממדית של התדרים המרחביים בכיוונים Y,X. בפועל, אנו מודדים כך את יכולת מערכת ההדמייה, ובמקרה שלנו מדובר בעצמית, להעביר בהצלחה את הניגוד (הקונטרסט) שבין הקווים הלבנים והשחורים. כל הסטיות האופטיות של עצמיות שהוזכרו בפוסטים הקודמים פוגעים ביכולתה של העצמית להעביר בהצלחה את הניגוד שהרי אם העצמית היתה אידיאלית איכות הדימוי היתה זהה לאיכות הנושא.

Picture34האיור מדגים את יכולת העברת הניגוד של עצמית כלשהיא בשני מצבים: נושא בתדר גבוה (מימין) ונושא בתדר נמוך (משמאל). הניגוד המקורי בשני המקרים הוא 100%, אולם לאחר שהאור מן הנושא עבר דרך העצמית אנו מקבלים ניגוד נמוך מאד, 20% בלבד ביכולת ההעברה של התדר הגבוה בעוד שבהעברת התדר הנמוך התקבלה דמות מוצא בעלת ניגוד של 90%, תוצאה יפה לכל הדעות. אם נתרגם את המשפט האחרון למילים פשוטות יותר הרי שהעצמית הנבדקת איננה מסוגלת להעביר פרטים קטנים בנושא (אלא במידה מועטה בלבד) אולם מעבירה יפה פרטים גדולים. ניתן לומר אם כן שכושר ההפרדה של עצמית זו איננו מן המשובחים עקב צירוף הסטיות השונות מהן היא סובלת.
הגרף שבתחתית האיור מראה לנו את הניגוד (המודולוציה, 0%=אין ניגוד כלל, 100%=ניגוד מירבי) לעומת צפיפות הקווים השחורים והלבנים בזוגות קווים למ״מ (כלומר כמה זוגות קווים שחור-לבן נכנסים למ״מ אחד). הגרף מראה שככל שצפיפות הקווים עולה, יכולת העצמית להדמות אותם הולכת ויורדת.

Picture35

סימולציה של יכולת העברת הניגוד מ-100% עד 2%

נבדוק כעת כיצד משתמשים ב- MTF לצורך הערכת רמת האיכות האופטית של עצמית אמיתית. בדוגמא שלפנינו נבדוק עצמית מתוצרת  Canon 50/1.4:

Picture36

הציר האנכי מתאר את הניגוד: 0=0% ניגוד, 1=100% ניגוד (מקסימום)
הציר האופקי הינו במ"מ ומתאר את המרחק ממרכז העצמית לקצוות.
הקווים העבים מתארים את השתנות הניגוד לדמות ברזולוציה של 10 זוגות קווים למ"מ, משמשים למדידת הניגוד.
הקווים  הדקים ב- 30 זוגות קווים למ"מ, משמשים למדידת כושר ההפרדה.
הקווים השחורים מתארים את הניגוד בצמצם פתוח, 1.4 והכחולים בצמצם 8.
הקווים השלמים הם מרידוניאליים (ניצבים לאלכסון המסגרת) והשבורים סגיטאליים (מקבילים לאלכסון המסגרת): ראו באיור הבא:

Picture37

בדוגמא הבאה נשווה בין שתי עצמיות בהתבסס על עקומות ה- MTF שלהן:

Microsoft PowerPointScreenSnapz005

מימין עקומות MTF לעצמית זום 100-400 מ״מ במצב 400 מ״מ. משמאל עצמית Prime 400 מ״מ. ללא ספק ביצועי עצמית ה-Prime עולים בהרבה על ביצועי עצמית הזום במצב 400 מ״מ. כושר העברת הניגוד של עצמית ה-Prime טוב בהרבה והניגוד נשמר היטב גם במרכז וגם בקצוות העצמית. הדבר בא לידי ביטוי חזותי בכך שקצב ירידת העקומות המתארות את עצמית ה-400 מ״מ נמוך בהרבה מקצב ירידית העקומות המתארות את עצמית הזום. כך שגם אם אין ברצונכם לפענח את המשמעות של כל קו, מספיק להשוות את קצב ירידת העקומות: העקומה היורדת בקצב איטי יותר מתארת עצמית טובה יותר. מהיכן מגיע היתרון? במקרה זה חלק מן ההסבר הוא העובדה שלאור המבנה האופטי המסובך וריבוי האלמנטים עצמיות זום תהינה פחות חדות מאשר עצמיות פריים ברמה מקבילה. כמו כן ההבדל נובע ממידת התיקון של הסטיות השונות. תיקון ברמה גבוהה יבוא לידי ביטוי במחיר העצמית.

ניסיון מענין לפשט ולהנגיש את כל אופן ההשוואה ביו עצמיות הוא מדד  DxO.

מדד DxOMark להערכת האיכות של עצמיות (וחיישני תמונה) פותח על מנת לספק אמצעי פשוט לשימוש המאפשר השוואה קלה וברורה בין הביצועים של עצמיות שונות אולם עם זאת הינו מבוסס מבחינה מדעית וטכנולוגית.

Picture40

מדד DxOMark להערכת האיכות של עצמיות (ומצלמות) מבוסס על הגורמים הבאים:

חדות (Sharpness): חדות הינה מאפיין סובייקטיבי של עצמית או דימוי. החדות מתארת את האיכות החזותית הנתפשת של פרטים בדימוי או פרטים ששועתקו ע"י העצמית. החדות קשורה גם לכושר ההפרדה וגם לניגוד: הציון של DxOMark לחדות מבוסס על ערך הנקרא  Perceptual Megapixels המשקלל את ה-  MTF של העצמית עם יכולת הראייה האנושית. ערך גבוה יותר הוא טוב יותר.

יכולת העברת האור (Transmission): מתארת את יכולתה של העצמית להעביר אור מן הנושא המצולם לשטח הפנים של חיישן התמונה. עצמיות מורכבות ממספר אלמנטים אופטיים מזכוכית כאשר כל אחד מהם מחזיר או בולע חלק מן האור העובר דרכו. לכן, ככל שיש בעצמית יותר אלמנטים כך יכולת העברת האור שלה תהיה נמוכה יותר. ערך נמוך יותר הוא טוב יותר.

 עיוות (Distortion): נגרם ע"י שינויים ביחס ההגדלה של הדימוי שיוצרת העצמית על פני שדה הדימוי. באופן מעשי עיוות צילומי מתאר את המידה בה עצמית איננה מסוגלת ליצור קו ישר בדימוי כאשר הקו בנושא הינו ישר. נמדד באחוזים, ערך קטן יותר הוא טוב יותר.

נפילת אור בקצוות (Vignetting): שינוי מתקדם בבהירות הדימוי מן המרכז החוצה, כלומר פינות המלבן של מסגרת הדימוי יהיו כהות יותר מאשר מרכז הדימוי. נמדד בסטופים. ערך קטן יותר הוא טוב יותר.

סטייה צבעונית רוחבית (Lateral Chromatic Aberration): הדימוי של גבול חד בין שחור ללבן ידגים שוליים צבעוניים (בעיקר מג'נטה, כחול או אדום) משני צידי הגבול. התופעה נגרמת כתוצאה מכך שעדשות אינן ממקדות את כל אורכי הגל באותה הנקודה. נמדד במיקרונים, ערך קטן יותר הוא טוב יותר.

בדוגמא הבאה נראה את פרוט מדד DxO לעצמית Sony FE Carl Zeiss Sonnar T* 55mm f1.8 ZA:

Picture41

לעצמית זו דרוג כללי גבוה 42, וחדות שוות ערך ל-  29MP. חשוב להדגיש שמדד החדות תלוי גם בחיישן: לאור הקשר בין כושר ההפרדה של העצמית לזה של החיישן  כפי שהוסבר בפוסט מס׳ 79 חשוב לשים לב למצלמה איתה נבדקה העצמית: שידוך של מצלמות שונות יביא לתוצאות שונות: שידוך עצמית נתונה לחיישן בעל כושר הפרדה גבוה יותר יגרום בדרך כלל לעליה (גם אם מתונה) בציון החדות של העצמית.

והנה פרוט מדד DxO לעצמית באיכות נמוכה: Sony DT 18-55mm f3.5-5.6 SAM:

Picture42

הציון הכללי נמוך מאד, 7, ודרוג החדות הוא  5MP בלבד. גם שאר המדדים נמוכים בהתאם.

הבה נבדוק 2 עצמיות דומות מבחינת תחום אורכי המוקד שלהן:

Picture43

מחיר עצמית זו הינו $1198

Picture44

מחיר עצמית זו הינו $498

לאור הנתונים של שתי העצמיות, איזו עצמית כדאי לרכוש? במקרה זה התשובה די ברורה: ביצועי שתי העצמיות דומים מאד, המחיר הגבוה של העצמית הראשונה איננו מוצדק, לפחות לדעתי. יש גם הבדל ניכר במשקל של שתי העצמיות דבר שאינו בא לידי ביטוי במדד DxO.

מדד  DxO לעצמיות מספק לנו אמצעי נוח וברור להשוואה ביו עצמיות שונות ללא הצורך לצלול לתוך עשרות עקומות MTF ונתונים מסובכים. אני בהחלט ממליץ על מדד זה ככלי עזר מצויין לגיבוש ההחלטה בכל הנוגע לרכישה של עצמיות.

אם כך,  מה כדאי לבדוק כאשר שוקלים לרכוש עדשה חדשה?

אפשר להתבסס על השאלות הבאות:
מהן ההעדפות האישיות שלי לגבי אורך המוקד?
מהו סגנון הצילום שלי? האם אני מצלם גם וידאו?
האם עדשה כבדה תתאים לי? כמה אני מוכן לשלם?
מהן הדרישות שלי לגבי האיכות האופטית של העדשה?
האם אני מדפיס את הצילומים שלי? באיזה גודל?
איזו מצלמה יש לי? מה גודל החיישן? מה היא רזולוציית החיישן?
מהם תנאי התאורה בהם אני מצלם בד"כ? האם מוצדק עבורי לשלם עבור עדשה מהירה?
האם לרכוש עדשת זום או עדשות Prime?
מהי איכות הבנייה והעמידות של העדשה?
האם יש צורך באטימות למים/אבק?
האם כדאי לרכוש או לשכור?
האם לרכוש עדשה חדשה או משומשת?
מיקוד אוטומטי או ידני?
עצמית עם מנוע מיקוד או בלעדיו?
ייצוב אופטי כן/לא? האם יש מייצב במצלמה או שהעצמית צריכה להיות מיוצבת?

אם כך, למעשה, מה ההבדל בין עצמית שמחירה $150 לזו שמחירה $15,000? את התשובה המפתיעה אולי תמצאו בסרטון המשעשע הזה. ובפרוט הניסוי תוכלו לצפות כאן.

בסופו של דבר, כמו כל החלטת רכישה אחרת רק בעל הענין יכול להחליט מה מתאים לו. הבעיה היא שרבים מדי נוטים להסתמך על כל מיני מיתוסים שונים ומשונים ועל אקסיומות המרחפות במרחבי הסייבר ועקב כך רוכשים עצמיות (ומצלמות) שאינן מתאימות להם. צלמים רבים מתפתים לרכוש עצמיות יקרות שאינן מספקות להם שום ערך מוסף מלבד המחיר הגבוה. מצד שני מוכרים גם המקרים בהם צלמים משקיעים במצלמות איכותיות ברזולוציה גבוהה אולם לא דואגים להתאים למצלמות אלו עצמיות שיביאו לידי ביטוי את כושר ההפרדה הגבוה של החיישן. כדברי האמרה הידועה: ״צריך שניים לטנגו״ וזה נכון גם בצילום.
מומלץ לבדוק עצמיות שבכוונתכם לרכוש באמצעות השכרה אם הדבר מתאפשר. כך תוכלו להתרשם מכל המאפיינים של העצמית ולהחליט האם היא לטעמכם ולכיסכם. בהצלחה!

82. על עדשות ועצמיות 2.0, חלק ו

82. על עדשות ועצמיות 2.0, חלק ו

בחלקה השישי של סדרת הפוסטים העוסקת בעדשות ועצמיות אדון בעוד מספר סטיות של עדשות וכן בתופעת נפילת האור בקצוות (Vignetting) ובמושג הבוקה (Bokeh).

בנוסף לסטייה הכרומטית ולסטייה הספרית גם הסטיות הבאות פוגעות באיכות הדימוי שיוצרות עדשות:

Coma, הנקראת גם Comatic Aberration:

סטייה זו גורמת לנקודת אור להופיע ככוכב שביט ומכאן השם שהוענק לה. משפיעה בעיקר בקצוות המסגרת ובצמצמים פתוחים.

coma-comatic-aberration-star-example

נקודות אור ללא סטייה (משמאל) ואותן נקודות בהשפעת הסטייה הקומטית (מימין).
מקור: http://www.lonelyspeck.com

קומה נגרמת כאשר אור ממקור נקודתי יחיד העובר דרך קצוות העדשה אינו מוקרן באותו הגודל שהיה מוקרן אילו היה עובר במרכז העדשה. סטייה זו נפוצה בעדשות בעלות מפתח צמצם גדול והדרך הטובה ביותר למזער את נזקיה היא לסגור את הצמצם למספר צמצם גבוה יותר. קומה מופיעה בשתי צורות: האחת כאשר ״זנב השביט״ פונה הלאה ממרכז הדימוי, אז מדובר בקומה חיצונית. כאשר זנב השביט פונה לכיוון מרכז הדימוי המדובר בקומה פנימית.

אסטיגמטיזם (טנגנציאלי וסגיטאלי) (Tangential and Sagittal Astigmatism):

סטייה זו גורמת למקור אור נקודתי להראות בדימוי כאילו מתחו אותו לשני כיוונים:

astigmatism-star-example

משמאל מקור או נקודתי ללא סטייה. במרכז אסטיגמטיזם טנגנציאלי ומימין אסטיגמטיזם סגיטאלי
מקור: http://www.lonelyspeck.com

גם סטייה זו בולטת בעיקר בצמצמים פתוחים וסגירת הצמצם מעלימה את התופעה.

עיוות (Distortion):

עיוות נוצר כאשר עדשה מקרינה דימויים בגודל שונה של נושאים בגודל זהה. עיוות עשוי להתרחש לשני כיוונים: בעיוות חבית (Barrel Distortion) הדימוי במרכז גדול יותר מאשר בקצוות. עיוות זה נקרא גם עיוות חיובי. בעיוות כרית (Pincushion Distortion) הדימוי במרכז קטן יותר מאשר הדימוי בקצוות. עיוות זה נקרא גם עיוות שלילי.lens-distortion-graphic

עיוות חבית (משמאל) ועיוות כרית (מימין)

עצמיות מסויימות מציגות שילוב של עיוות כרית ועיוות חבית, תופעה הידועה כ״שפם״. עיוות משפיע בעיקר על אלמנטים בצילום שהם ישרים במקור. עצמיות רחבות זווית יוצרות עיוותים ניכרים כאשר הדוגמא הבולטת ביותר היא עדשת עין הדג (Fish Eye):

fisheye

עיוותים הנוצרים בעת צילום בעצמית רחבה מאד מסוג Fish Eye. מקור: https://youtu.be/5_kY6lClTvA

לרשותנו כיום כלי תוכנה מתקדמים לצורך טיפול בעיוותים, הן באמצעות Lens Profiles והן באמצעות טיפול אוטומטי וידני ע״י כלים כגון Upright ב- Lightroom. מאידך ניתן להשתמש בסטיות אלו כאמצעי חזותי בצילומים.

עיקום השדה (Field Curvature):

סטייה זו נוצרת כאשר העצמית כאילו ממקדת את האור על משטח מיקוד מעוגל מדומה ולא על פניו השטוחים של חיישן התמונה. מאחר וחיישני התמונה הינם שטוחים לחלוטין, סטייה זו תגרום לשינויים במיקוד על פני הדימוי הנוצר על פני החיישן. בד״כ פרטים בקצוות המסגרת יהיו לא חדים בעוד שפרטים במרכזה יהיו חדים. עצמיות מודרניות אינן סובלות מסטייה זו ולעיתים משתמשים בה כאמצעי חזותי. יש לסטייה זו השפעה ניכרת על צורת הפרטים באזורים שאינם בפוקוס (Bokeh).

IMG_7924

במצבי צילום מסויימים השפעת עיקום השדה על האזורים שאינם בפוקוס יוצרת אפקטים מענינים

נפילת אור בקצוות (Vignetting):

קיימים שלושה סוגי Vignetting:

א. נפילת אור פיסית-מכנית: אור החוזר מחפץ הנמצא בקצוות האזור המצולם נחסם בחלקו ע"י אביזרים המורכבים על העצמית, כמו מגן שמש לא מתאים, מסננים או אלמנטים פנימיים בתוך העצמית שיעודם הגבלת הסטייה הכרומטית ו- Flare. אם הגורם הוא חיצוני סגירת הצמצם רק תחמיר את הבעיה.

ב. נפילת אור אופטית: נוצרת ע"י העצמית. למעשה כל עצמית מעבירה יותר אור במרכז מאשר בקצוות ובעיקר בצמצמים פתוחים. עצמיות רחבות זוית יוצרות נפילת אור בקצוות מודגשת יותר מאשר עצמיות ארוכות מוקד. סגירת הצמצם תצמצם את הבעיה (סגירתו מעבר לנקודת העקיפה תפגע בחדות).

ג. נפילת אור בפיקסל: מופיעה רק במצלמות דיגיטליות והינה תוצאה של העומק של הפיקסל. אור הפוגע בפיקסל בזווית שטוחה מתפזר חלקית ואינו נקלט במלואו ע"י הפיקסל. התופעה חמורה יותר בשימוש בעצמיות רחבות זוית ובצמצמים פתוחים. התופעה פחותה בחיישנים בהם יש עדשות זעירות מעל הפיקסלים.

Picture28

השפעת סגירת הצמצם על נפילת האור בקצוות: ככל שהצמצם סגור יותר התופעה הולכת ונעלמת

גם סטייה זו ניתנת לטיפול טוב בעזרת כלי התוכנה ולעיתים נרצה אפילו להוסיף נפילת אור לצילום באופן מלאכותי כאמצעי נוסף לביטוי חזותי.

אובך (Flare) ודמות שד כפולה (Ghosting):

שתי תופעות לוואי שליליות נוספות הן היווצרות דמות כפולה ויצירת אובך הגורם לירידה בניגוד התמונה. שתי התופעות נגרמות עקב החזרות אור פנימיות בתוך המצלמה בין העצמית לכיסוי הזכוכית המבריק של חיישן התמונה (מסנן Law Pass) ןכן בין האלמנטים של העצמית לבין עצמם. ניתן לצמצם את התופעות הללו ע"י שימוש בעצמיות בעלות ציפוי מיוחד מונע החזרות. בעצמיות Super Telephoto ובעדשות אחרות בעלות קוטר גדול של האלמנט האופטי הקדמי ניתן להשתמש בכיסוי מגן קעור לפני האלמנט הקדמי (במקום בכיסוי מגן שטוח) על מנת להקטין את החזרות האור.

Lens-Flare

יצירת אובך בדימוי כתוצאה מהחזרת אור בין העצמית לחיישן. מקור: https://photographylife.com

psf_ze21_uncoated.gif

הדגמה של היווצרות אובך ודמות שד של מקור אור קטן באמצעות שימוש בעצמית ללא ציפוי מונע החזרות אור פנימיות. מקור האור נע ממרכז שדה הראיה לקצוות שלו. החזרות אור מרובות בין משטחי העדשות בעצמית יוצרות ״דמויות שד״ התלויות במיקום מקור האור.
מקור: http://lenspire.zeiss.com/en/technical-article-t-star-coating

G3K55568

היווצרות אובך בצילום

באפשרותנו לטפל באובך באמצעות כלי ה- DeHaze, המאפשר גם הוספה מלאכותית של אובך לדימוי כאמצעי חזותי.

מאמר קצר הכולל הפניה לסרטון הבוחן את השימוש ב-Lens Flare בקולנוע ניתן למצוא כאן.

מאמר מקיף מאד בנושא Lens Flare ניתן למצוא כאן.

מאמר מקיף העוסק בסטיות של עדשות וכולל גם הסבר לגבי בחינת מידת הסטייה ניתן לקרוא כאן.

בוקה (Bokeh):

הבוקה (מיפנית: לא בפוקוס, מטושטש) הינו מונח המשמש לתאור המראה של האזורים שאינם בפוקוס בדימוי הצילומי. תאור זה הינו איכותי ולא כמותי. הבוקה נחשב כאחד ממדדי האיכות של עצמיות למרות שכאמור לא ניתן למדוד אותו אלא להתייחס איליו באופן מילולי בלבד.

Microsoft PowerPointScreenSnapz004

א. בוקה רע מופיע בד"כ בצורת דונט: טבעת בהירה מקיפה אזור מרכזי כהה יותר

ב. בוקה נייטרלי: האור מפוזר באופן אחיד ומוגדר בבירור

ג. בוקה טוב: האור מפוזר באופן אחיד ונעלם ברכות

Picture29

השוואה בין הבוקה שיוצרות שתי עצמיות שונות

הבוקה תלוי בתנאי הצילום, במרחק הצילום, בצמצם ובמאפייני העצמית, בעיקר במידת הסטייה הספרית שלה.

Picture30

 צילום בצמצם 4 ובצמצם 22: אפשר לומר כ לעצמית זו בוקה ״טוב״ שהינו ״נעים״ לעין

Picture31

דוגמא לבוקה גרוע שאינו נעים לעין: נוצרה הכפלה של קווי מתאר

Picture32

דוגמא לצילום עם בוקה בצורת טבעות בצל: אפייני לעדשות א-ספריות שיוצרו בטכנולוגיית
(PMO (Precision Molding Optics: פני השטח של תבניות הייצור אינם חלקים מספיק וגורמים לחספוס של פני העדשה. התופעה איננה קיימת בעדשות א-ספריות שיוצרו באמצעות ליטוש, שיטה יקרה יותר.

defocus lens

Picture33

AF DC-Nikkor 135mm f/2D: f/2, חוגת ה- Defocus ממצב F עד מצב R

בסופו של דבר הבוקה הוא ענין סובייקטיבי וכאשר בוחנים עצמית מומלץ לבדוק את מראה הבוקה שהיא יוצרת בצמצמים שונים ובמרחקי צילום שונים ואם המדובר בעצמית זום גם באורכי מוקד שונים כדי לבדוק האם אופי הבוקה של עצמית זו הוא לטעמנו.

בחלק השביעי והאחרון של סדרה זו אדון בנושאים הבאים:

12. MTF, מדד DxOMark לאיכות של עצמיות
13. שיקולים בבחירת עצמיות
14. מספר מחשבות על עצמיות בכלל…

80. על עדשות ועצמיות 2.0, חלק ד

80. על עדשות ועצמיות 2.0, חלק ד

בפרק הרביעי בסדרת הפוסטים על עדשות ועצמיות אדון בנושאים הבאים:

6. הקשר בין גודל החיישן, זווית הראיה של העצמית, הצמצם וה- ISO
7. כושר הפרדה של עצמיות והקשר שלו לכושר ההפרדה של חיישני התמונה

הקשר בין גודל החיישן, זווית הראיה של העצמית,הצמצם וה- ISO:

כידוע קיימים מספר פורמטים של חיישני תמונה, למן החיישנים הזעירים שבסמארטפונים ועד לגדולים שבמצלמות הפורמט הבינוני. קיים קשר הדוק בין גודלו של חיישן התמונה לבין אורך המוקד הדרוש של העצמית, זווית הראייה שלה וכושר הכיסוי שלה. בנוסף לכך לגודל החיישן השפעה על הצמצם האפקטיבי ועל ה- ISO האפקטיבי.

550px-Sensor_sizes_overlaid_inside_-_updated.svg_

מספר פורמטים נפוצים של חיישני תמונה אלקטרוניים במצלמות דיגיטליות

Picture1

זווית הראייה הדרושה לחיישן בפורמט מלא (Full Frame 24X36) ובפורמט Crop

Picture2

השוואה בין זווית הראייה של שלושה פורמטים נפוצים של חיישני תמונה

השפעת גודל חיישן התמונה וגורם החיתוך (Crop Factor) על אורך המוקד המעשי וזווית הראייה המעשית: אורך המוקד האמיתי X גורם החיתוך

דוגמא: עצמית באורך מוקד אמיתי של 50 מ"מ מורכבת על מצלמה עם חיישן בעל יחס חיתוך של 1.5: באופן מעשי נקבל זווית ראייה (צרה יותר) של עצמית באורך מוקד של 75 מ"מ. חשוב להבין שאין כאן אפקט Tele אלא הקטנת זווית הראייה בלבד!

השפעת גודל חיישן התמונה וגורם החיתוך (Crop Factor) על הצמצם המעשי:
הצמצם האמיתי X גורם החיתוך

דוגמא: צמצם אמיתי של 2.8 בעצמית המורכבת על מצלמה עם חיישן בעל יחס חיתוך של 1.5: באופן מעשי נקבל צמצם 4.2, ובהתאם כמות האור שתגיע לחיישן תהיה פחות מחצי מזו שהיתה מגיעה לחיישן FF.

ומה לגבי ISO?

השפעת  גורם החיתוך על ה-ISO האמיתי: ערך ISO אמיתי X גורם החיתוך בריבוע

דוגמא: ערך ISO ב-FF הוא 100. ערך ISO מעשי במצלמה עם גורם חיתוך של 1.5 = 225!

נבדוק דוגמא של מצלמה בעלת חיישן קטן בגודל 13.2X8.8 מ"מ, Sony RX10.
היצרן מציג את העצמית כבעלת אורך מוקד של 24-200 מ"מ אבל אלו הם אורכי המוקד שהיו אילו היה במצלמה חיישן FF. בפועל, העצמית היא בתחום אורכי המוקד האמיתיים 8-67 מ"מ, ורק לאחר הכפלה בגורם החיתוך 3 מתקבל התחום כפי שהוא מפורסם ע"י היצרן.

העצמית מפורסמת כבעלת צמצם מירבי של 2.8 על פני כל תחום אורכי המוקד, לכאורה, הישג אופטי יפה. אולם, בשקלול גורם החיתוך מדובר על צמצם 7.6, הרבה פחות מרשים…

ערך ISO100  הוא למעשה 900, ולכן כבר ב"100" ניתן להבחין ברעש ללא מאמץ…

מכאן קל להבין את איכות הצילומים המתקבלת מטלפונים סלולריים… בהם גורם החיתוך עובד שעות נוספות.

היתרון העיקרי של מצלמות עם חיישנים קטנים הוא הצורך בעצמיות קטנות, קלות וזולות יותר.
לאור כל הנ״ל, להחלטה על פורמט מסויים של חיישן תמונה יש השלכות משמעותיות לגבי העצמיות בהן נשתמש.

כושר הפרדה (Resolving Power) מודד את יכולתו של התקן הדמייה להפריד בין  נקודות בנושא הנמצאות במרחק זוויתי קצר זו מזו. כושר ההפרדה של ההתקן יהיה תוצר של כושר ההפרדה של העצמית במשולב עם כושר ההפרדה של חיישן התמונה שבמצלמה. תוצר זה יקבע מה יהיה כושר האבחנה של הדימוי הנוצר (Image Resolution). יש לזכור שכושר ההפרדה של העצמית מוגבל ע״י תופעת העקיפה (Diffraction) אליה התייחסתי בפוסט הקודם וכן ע״י סטיות (Abberations) של העצמית אליהן אתייחס בהמשך ואילו כושר ההפרדה של חיישן התמונה מוגבל ע״י מספר הפיקסלים שלו וכן ע״י רמת הרעש שהוא מייצר במהלך תהליך יצירת הדימוי הדיגיטלי. בכל מקרה ברור שצריכה להיות התאמה בין כושר ההפרדה של העצמית לכושר ההפרדה של חיישן התמונה אחרת הגורם בעל כושר ההפרדה הנמוך יותר יגביל את כושר האבחנה של הדימוי שיווצר.
כושר ההפרדה המירבי של מערכת הדמיה תלוי בכושר ההפרדה של סרט הצילום או חיישן התמונה האלקטרוני ושל העצמית, ומתקבל בקירוב טוב ע"י הנוסחה: Microsoft PowerPointScreenSnapz001כאשר:
S=כושר ההפרדה של המערכת (עצמית+חיישן)
F=כושר ההפרדה של  חיישן התמונה האלקטרוני
L=כושר ההפרדה של העדשה
כולם בזוגות קווים למ"מ (lp/mm)

מכאן נובע, כי שיפור באחד מן הגורמים אינו יעיל מאחר וישפיע באופן מזערי על התוצאה הכללית. רק כאשר כושר ההפרדה של העצמית והחיישן תואמים ניתן להתקרב לביצועים המירביים שלהם. נושא כושר ההפרדה הוא מסובך למדי מאחר ולא ניתן להפריד אותו מגורמים נוספים המשפיעים על ביצועי העצמית. לכן פותח מדד (MTF (Modulation Transfer Function אותו אסקור בחלקה השביעי והאחרון של סדרה זו וכן מדד האיכות לעצמיות של  DxOMark שגם הוא יסקר באותו הפוסט.

שני גורמים התורמים לכושר ההפרדה הם חדות (Sharpnness) ואקיוטנס (Acutance):

חדות קשורה לכושר ההפרדה של החיישן והעצמית. אקיוטנס משמעותה מהירות המעבר בין בהיר לכהה:

Picture38

ראו את הדוגמא הבאה על מנת להבין את שני המושגים הללו והקשר בינהם:

Picture39

מקור: Cambridgeincolour.com

חשוב להזכיר כי מעבר לכושר ההפרדה הנתון של העצמית והחיישן קיימים גורמים מעשיים נוספים שישפיעו על כושר האבחנה של הדימוי הסופי:
1. רעידות המצלמה בזמן החשיפה, כולל זו הנגרמת מפעולת המראה (במצלמות DSLR) והסגר
2. טעויות במיקוד, הן של מערכת המיקוד האוטומטי והן של הצלם בעת שימוש במיקוד ידני
3. שטח העדשה: בקצוות תמיד כושר האבחנה יהיה נמוך יותר מאשר במרכז
4. הצמצם: בצמצמים פתוחים תתקבל תוצאה פחות חדה שתלך ותשתפר עם סגירת הצמצם עד לצמצם בו מגבלת העקיפה מבטלת את תוספת החדות
5. ניגוד הנושא המצולם: נושא בניגוד גבוה יראה חד יותר מנושא בניגוד נמוך שצולם באותם התנאים
6. המרחק בין המצלמה לנושא וכמות האובך באויר: ככל שמרחק המצלמה מן הנושא עולה כושר האבחנה של הדימוי ירד, גם עקב ההקטנה וגם עקב נוכחות אובך, אבק, עשן ושאר חלקיקים באויר

מאמר מפורט מאד (לגיקים בלבד…) בנושא כושר הפרדה של עצמיות וחיישנים ניתן לקרוא כאן.

בפרק הבא בסדרה זו אדון בסטיות של עצמיות ובנושא הבוקה.

79. על עדשות ועצמיות 2.0, חלק ג

79. על עדשות ועצמיות 2.0, חלק ג

השפעת הצמצם וגורמים נוספים על עומק השדה בצילום:

בעצמיות מודרניות הצמצם הינו התקן אלקטרו-מכני הנמצא בתוך מכלול העצמית ותפקידו לקבוע את כמות האור שתעבור דרך העצמית בזמן החשיפה (הנקבע בנפרד ע״י מהירות הסגר). בעצמיות ישנות הצמצם הינו התקן מכני ידני.

Picture13

ככל שהצמצם פתוח יותר (מספר צמצם נמוך) יחדור יותר אור לעצמית במהלך החשיפה ולהפך

מספרי הצמצם, הידועים כמספרי f הינם המנה המתקבלת מחלוקת אורך המוקד של העצמית בקוטר העצמית. מספרים אלו הינם אוניברסליים ומשמעותם זהה בכל עצמית שהיא: סגירת הצמצם בתחנת צמצם אחת (סטופ) מפחיתה את כמות האור לחצי מן הכמות שעברה בתחנה הקודמת לה. (בהסתייגות אחת: נפילת האור בתוך העצמית איננה מובאת בחשבון במספר הצמצם. לצורך כך פותחו מספרי ה-T שהם מספרי צמצם מוכפלים בגורם ההעברה של העצמית. מספרי T מקובלים בעצמיות המשמשות לקולנוע וטלוויזיה, שם חשוב לשמור על רמת חשיפה זהה בין עצמיות שונות). בד״כ, מספר הצמצם הנמוך ביותר (פתוח) של העצמית מקובל כגורם איכות המאפשר צילום ומיקוד אוטומטי בתנאי תאורה ירודים. עם זאת, באופן כללי ניתן לומר כי בצמצם הפתוח ביותר של כל עצמית הדימוי הנוצר יהיה פחות חד (בעיקר בקצוות המסגרת) ויותר רך (פחות ניגודי) מאשר בצמצמים סגורים יותר. כל הסטיות האופטיות של העצמית (בהן אדון בפוסט נפרד) משפיעות יותר בצמצם פתוח. עצמיות בעלות מפתח צמצם מירבי גבוה הינן גדולות, כבדות ויקרות יותר מאשר עצמיות מקבילות בעלות מפתח צמצם מירבי קטן יותר.

Slide50

Slide51

Slide52

מעבר לשליטה בכמות האור העוברת דרך העצמית במהלך החשיפה הצמצם משפיע על גורם מרכזי בצילום הידוע כעומק שדה (Depth of Field) . עומק שדה הוא מושג בצילום ובאופטיקה המציין את תחום המרחקים סביב מרחק המוקד של מערכת אופטית בו תתקבל תמונה חדה של העצם המדומה. למושג זה חשיבות רבה בתחום הצילום משום  שלבחירה  בעומק השדה עשוייה להיות  משמעות  חזותית בהדגישה פרטים אחדים וטשטושם של אחרים. ככל שמספר הצמצם גבוה יותר (סגור יותר) עומק השדה עולה (עד גבול  העקיפה, ראה בהמשך). ככל שמספר הצמצם נמוך יותר (פתוח יותר) עומק השדה יורד.

Picture14

עומק שדה גדול (ימין) לעומת עומק שדה קטן (שמאל)

Slide57

בנוסף למספר הצמצם עצמו, עומק השדה תלוי גם בגורמים הבאים:
המרחק בין המצלמה לנושא: ככל שהמרחק גדול יותר עומק השדה גדול יותר
אורך המוקד של העצמית: ככל שאורך המוקד עולה עומק השדה יורד
גודל חיישן התמונה: ככל שהחיישן גדול יותר עומק השדה יורד
יחס ההגדלה: ככל שיחס ההגדלה עולה, עומק השדה יורד

Slide59

Slide60

Slide61

Slide62

Slide63

Slide65Slide66

את המרחק ההיפרפוקלי ניתן לחשב באמצעות הנוסחה הבאה:

SafariScreenSnapz012

לגבי קוטר מעגל הטשטוש Circle of confusion ראו בהמשך.

לצפיה בסרטון בנושא המרחק ההיפרפוקלי לחצו כאן.

מאמר מקיף על השימוש במרחק ההיפרפוקלי ניתן לקרוא כאן.

גורם נוסף הקשור לתחושת החדות הנגרמת מעומק השדה בצילום הוא קוטר מעגל הטשטוש Circle of Confusion. הכוונה לגודלה של נקודה הנתפשת כחדה לעומת נקודה שאיננה נתפשת ככזו. באזורים הנתפשים כחדים גודל הנקודה קטן יותר מאשר באזורים שאינם נתפשים כחדים. קוטר מעגל הטשטוש קשור לכושר ההפרדה המירבי של העין. בד״כ מקובל להגדיר את קוטר מעגל הטשטוש כ- 1/1500 מאלכסון הפורמט. לדוגמא, בפורמט 24X36 מ״מ (Full Frame) אורך האלכסון הוא 43 מ״מ ולכן קוטר מעגל הטשטוש הוא 0.029 מ״מ. לפניכם טבלה המסכמת את קוטר מעגל הטשטוש לפורמטים השונים:

SafariScreenSnapz010

מקור: Wikipedia

Picture20

השפעת קוטר מעגל הטשטוש על תפישת החדות

SafariScreenSnapz011

הקשר בין עומק השדה לקוטר מעגל הטשטוש. מקור: http://www.limephoto.co.za

עקיפה (Diffraction): זוהי תופעה פיסיקלית אוניברסלית הבאה לידי ביטוי גם באור כאשר הוא עובר דרך מפתח קטן. תופעת העקיפה אינה יחודית לצילום דיגיטלי אלא מהווה הפרעה אופטית אוניברסלית הקשורה לצמצם ולאורך הגל של האור. בצילום דיגיטלי מתקשרת התופעה גם לגודל הפיקסל. העקיפה פוגעת ברזולוציית הדמות. מאחר וצלמים בד"כ נוטים להשתמש בצמצמים סגורים על מנת לקבל עומק שדה רב, בצמצם מסוים ריכוך התמונה כתוצאה מן העקיפה יבטל את תוספת החדות שמקורה בעומק שדה גדול יותר. כאשר תופעה זו מתרחשת האופטיקה בה אנו משתמשים היגיעה לנקודה בה היא מוגבלת ע"י העקיפה. הבנת התופעה ומציאת הצמצם בו היא מתחילה להשפיע חשובה על מנת לשפר את איכות הצילום ולמנוע חשיפות  ארוכות מיותרות בצמצמים סגורים מדי או שימוש ב- ISO  גבוה מדי ללא צורך אמיתי. לפניכם מספר דוגמאות:

Picture15

קטע (זום 100%) מצילום שצולם בצמצם 8. צילום: גבי גולן

Slide70

אותו הצילום בצמצם 22. שימו לב לריכוך ואיבוד החדות יחסית לצילום הקודם. צילום: גבי גולן

Picture17

צילום זה צולם בצמצם 2.8
צילום: סטודנטים בחוג לתקשורת צילומית במכללה האקדמית הדסה ירושלים

Slide72

קטעים מאותו הצילום, כל קטע צולם בצמצם אחר. שימו לב לשינויים בחדות עם שינוי הצמצם

מבחינה פיסיקלית, מידת העקיפה תלויה אך ורק באורך גל של האור ובצמצם. העקיפה קיימת בפועל כבר בצמצמים פתוחים אולם היא איננה מורגשת. ככל שקוטר הצמצם קטן (מספר צמצם גבוה יותר) העקיפה עולה והשפעתה נראית כריכוך הדימוי. יש קשר בין גודל הפיקסל למידת ההשפעה של העקיפה: ככל שהפיקסל קטן יותר העקיפה תהיה מורגשת כבר בצמצם פתוח יותר. לכן, במצלמות בעלות חיישנים קטנים עם פיקסלים קטנים השפעת העקיפה מורגשת כבר בצמצמים פתוחים יחסית כמו 4-5.6.

מבלי להיכנס להסברים פיסיקליים מסובכים, הנה לפניכם טבלה המציגה את גודל נקודת האור (נמדד במיקרונים, אותה יחידת מידה בה נמדד גם גודל הפיקסלים בחיישן) לכל צמצם:

airy

אם ידוע לכם גודל הפיקסל במצלמה שלכם (ניתן למצוא את הנתון באתר היצרן ובאתרים כדוגמת dpreview.com) תוכלו למצוא מיד מהו הצמצם המירבי בו תוכלו להשתמש לפני שתופעת העקיפה תהיה מורגשת: לדוגמא, בצמצם 8 קוטר נקודת האור הוא 5.37 מיקרון, כלומר זהו בקירוב טוב הצמצם המירבי שניתן להשתמש בו במצלמה עם חיישן בעל פיקסלים בגודל של כ- 5.5 מיקרון לפני שהעקיפה משפיעה באופן בעייתי.

Picture18

בדוגמא זו אנו רואים כיצד נקודת אור הולכת וגדלה ככל שהעקיפה עולה עם סגירת הצמצם. כאשר גודל הנקודה חורג מגבולות הפיקסל (כל ריבוע קטן מייצג פיקסל אחד) מתקבל הריכוך האפייני לעקיפה. במקרה זה מדובר בפיקסל גדול יחסית בגודל 5.5 מיקרון, והעקיפה נשלטת עד לצמצם 8-11 מעבר לכך, גודל הנקודה חורג כבר מגבולות הפיקסל והעקיפה תהיה מורגשת יותר ויותר ככל שמפתח הצמצם יקטן. המסקנה: על כל צלם להכיר את מגבלת העקיפה של המצלמה שלו. חשוב להבין שהעקיפה איננה קשורה בשום אופן לאיכות העצמית.

הדרך המעשית הפשוטה ביותר למצוא את מגבלת העקיפה היא להציב את המצלמה על חצובה, למקד באופן ידני ולא לשנות את המיקוד בכל סדרת החשיפות, שיבוצעו בכל הצמצמים מן הפתוח ביותר ועד הסגור ביותר, כאשר רק זמן החשיפה ישתנה בהתאם לשינוי הצמצם. מומלץ להשתמש גם בשלט רחוק כדי להפעיל את המצלמה. השוו את התוצאות ותגלו מיד מהו הצמצם בו מתחילה מגבלת העקיפה של המצלמה שלכם.

מאמר מקיף בנושא העקיפה תוכלו לקרוא כאן.

בפרק הבא בסדרה זו אדון בקשר בין גודל החיישן ,זווית הראיה, הצמצם וה-ISO
וכן בכושר ההפרדה של עצמיות והקשר שלו לכושר ההפרדה של חיישני תמונה.

78. על עדשות ועצמיות 2.0, חלק ב

78. על עדשות ועצמיות 2.0, חלק ב

בפוסט השני  בנושא עדשות ועצמיות אדון בנושא הבא:

4. סוגי עצמיות: עצמיות בעלות אורך מוקד קבוע (Prime Lenses) ועצמיות בעלות אורך מוקד משתנה (Zoom Lenses), עצמיות מאקרו לצילום מקרוב, עצמיות Tilt-Shift

סוגי עצמיות:
לעצמית בעלת אורך מוקד קבוע זווית ראייה וצמצם פתוח מירבי קבועים. עצמיות בעלות אורך מוקד קבוע נקראות באנגלית Prime Lenses. לעצמיות בעלות אורך מוקד משתנה (Zoom Lenses) זויית ראייה משתנה והצמצם הפתוח המירבי עשוי להיות קבוע (בעצמיות איכותיות יותר) על פני כל תחום אורכי המוקד של העצמית או משתנה (בעצמיות פחות איכותיות).

zoom

הדגמת פעולתה של עצמית זום בשני אורכי המוקד הקיצוניים שלה: זווית הראייה משתנה בהתאם לאורך המוקד.
Picture11תנועת האלמנטים בעצמית זום מאורך מוקד של 55 מ״מ ועד 200 מ״מ

מה עדיף? עצמית Prime או עצמית Zoom?

יתרונות של עצמיות Prime:
חדות וכושר הפרדה (תלוי ברמה הכללית של העצמית), ניגוד גבוה יותר, בד״כ פחות עיוותים וסטיות צבע. בעיית המיקוד המשתנה בצמצמים שונים פחות מפריעה, פחות עיקום השדה.
צמצם מקסימלי פתוח יותר ולכן אפשרות שליטה טובה יותר בעומק השדה.
שליטה מדוייקת על המיקוד לצורך ביצוע הערמת פוקוס (Focus Stacking)
עמידות וחוזק מכני עדיפים (פחות חלקים נעים)
גודל ומשקל: ניידות עדיפה
מחיר נמוך יותר (לעצמית יחידה, באותו תחום של רמת איכות כללית)
עצמיות פריים מעודדות את הצלם להתקרב לנושא ולמצוא את מרחק הצילום והפרספקטיבה האופטימליים עבורו.

יתרונות של עצמיות Zoom:
גמישות: במקומות בהם התנועה מוגבלת ו/או הנושא נע או משתנה במהירות. כמו כן במצבים בהם לא ניתן להחליף עצמיות בזמן הצילום עקב רטיבות, אבק וכו׳.
קלות שימוש (ועם זאת מציאת השילוב המתאים של מרחק הצילום והפרספקטיבה אינה טריוויאלית)
התאמה לשימוש מיוחד (במיוחד בוידאו/קולנוע)
מחיר נמוך יותר (לעומת מספר עצמיות Prime)

עצמיות זום מתאימות במיוחד לשימוש במצבי צילום בהם אין זמן לעסוק בהחלפת עצמיות תוך כדי הצילום, כמו בצילום ארועים, צילום חדשותי וצילום של Action Shots.

תופעה יחודית לעצמיות זום היא תופעת ״המיקוד הנושם״ (Focus Breathing): זווית הראייה ויחס ההגדלה משתנים לא רק כתלות באורך המוקד אלא גם כתלות במרחק הצילום. במקרים רבים, צלם שמשתמש בעצמית זום אחת לא ישים לב לתופעה אולם אם משווים 2 עצמיות זום שונות באותו טווח אורכי המוקד התופעה עשוייה להתגלות:

focus br1

צילום בשני דגמים שונים של עדשת זום 70-200 של Nikon, במצב 200 מ״מ מאותו המרחק
מקור: gregphoto.com

בסרטון המדגים את התופעה תוכלו לצפות כאן.

תופעת ה-Focus Breathing אפיינית בעיקר לעדשות Zoom מסוג Variable Focus, לעומת עדשות Zoom מסוג Parfocal שכמעט אינן סובלות מן הבעיה. עדשות מסוג Parfocal נמצאות בשימוש בעיקר בתחום הקולנוע והטלויזיה מאחר והן מאפשרות לבצע Zoom In או Zoom Out ללא שינוי המיקוד. בצילום Stils בכל מקרה ממקדים מחדש לאחר שינוי הקומפוזיציה כך שאין בעיה להשתמש בעדשות Variable Focus.

SafariScreenSnapz011
ההבדל במבנה האופטי בין עצמית Zoom מסוג Parfocal לעומת עצמית Zoom מסוג Variable Focus. מקור: Petapixel

גם החדות של עצמיות זום עשויה להשתנות בהתאם לאורך המוקד ובהתאם למרחק הצילום (וכמובן גם בהתאם לצמצם). כל ההבדלים הללו בין גודל הדימוי וחדותו נובעים מן המאפיינים האופטיים היחודיים לתכנון האופטי של כל עצמית זום.

עצמיות מאקרו:

סוג נוסף של עצמיות שהמאפיינים שלהן שונים מאשר עצמיות רגילות הן עצמיות לצילום מקרוב הידועות כעצמיות מאקרו (Macro). בעוד שעצמיות רגילות מיועדות להקרין דימוי מוקטן של נושא גדול על פני חיישן התמונה הרי שעצמיות מאקרו מיועדות להקרין דימוי מוגדל של נושא קטן. עצמית מאקרו ״אמיתית״ תהיה מסוגלת ליצור דימוי שגודלו זהה לגודל הנושא על פני החיישן, ביחס הגדלה של 1:1. אם זאת, גם עצמיות בעלות יחס הגדלה קטן יותר של 1:3 או 1:2 מכונות עצמיות מאקרו. בעוד שעצמיות רגילות מתוכננות לצילום ממרחק גדול מן הנושא, עצמיות מאקרו מתוכננות לצילום ממרחק קצר מאד (מספר סנטימטרים) מן הנושא. דוגמא לעצמית מאקרו יעודית היא  העצמית הפופולרית
AF Micro Nikkor 60 f2/.8D המסוגלת להגיע ליחס הגדלה של 1:1. עצמית מאקרו יחודית היא
Canon MP-E 65mm f/2.8 1-5x Macro Photo המסוגלת להגיע ליחס הגדלה של 5:1 (גודל הדימוי יהיה פי 5 מאשר גודל הנושא). בכוונתי לייחד בעתיד פוסט נפרד לנושא צילום המאקרו.

SafariScreenSnapz008

צילום ביחס הגדלה של 1:4: גודל הדימוי הוא 1/4 מגודל הנושא

SafariScreenSnapz009

צילום ביחס הגדלה של 1:1: גודל הדימוי זהה לגודל הנושא (בדוגמא זו גודל החיישן איננו מאפשר לכלול את כל הנושא על החיישן במצב 1:1 לכן רק חלק מן הנושא מופיע בדימוי)

מקור לשני האיורים הנ״ל: http://www.cambridgeincolour.com

mpe65_28macro_1_xl

Canon MP-E 65mm f/2.8 1-5x Macro Photo
G3K55491
צילום מאקרו ביחס הגדלה של כ- 1:1. צולם עם עצמית Micro Nikkor 105
צילום: גבי גולן

שימו לב לעומק השדה הרדוד בצילום הנ״ל הנובע בעיקר מן המרחק הקצר שבין העצמית לנושא.

Macro_lenses_magnification_cheat_sheet

השוואה בין יחסי הגדלה שונים שמאפשרות עצמיות שונות
מקור:http://media.digitalcameraworld.com

עצמיות Tilt-Shift:

סוג מענין של עצמיות שאינן נמצאות בשימוש המוני הן עצמיות  Shift-Tilt. עצמיות אלו מיועדות לתיקון אופטי של עיוותי פרספקטיבה הנוצרים כאשר מישור החיישן איננו מקביל למישור הנושא. נכון, ניתן כיום לתקן עיוותים אלו ברמה סבירה באופן דיגיטלי גם ללא שימוש בעצמיות יעודיות אבל איכות הדימוי תהיה שונה. כמו כן, באמצעות עדשות אלו ניתן ליישם את הכלל של (Scheimpflug  (1865-1911 הקובע כי כאשר הקווים הנמשכים ממישור העצמית,  מישור הנושא ומישור חיישן התמונה (או סרט הצילום) נפגשים כל מישור הנושא יהיה בפוקוס:

Parallels DesktopScreenSnapz002

הנה שני דגמים של עצמיות Tilt-Shift מתוצרת Nikon ו-Canon:

Parallels DesktopScreenSnapz003

בעצמיות אלו ניתן להסיט את האלמנטים האופטיים הקדמיים יחסית לאחוריים.

Picture12

Slide41

tilt shift

צילום נושא בעצמית רגילה (משמאל) ובעצמית Tilt-Shift (מימין).
מקור: http://cow.mooh.org

לסיכום, עצמיות Tilt-Shift מאפשרות תיקוני פסרספקטיבה וחדות ברמה האופטית כבר בעת הצילום. לצלמים העוסקים בצילום ארכיטקטוני זוהי כמובן האפשרות המומלצת.

בחלק הבא בסדרה זו אדון בצמצם והשפעתו על הצילום.

77. על עדשות ועצמיות 2.0, חלק א

77. על עדשות ועצמיות 2.0, חלק א

בפוסטים 36-37 כללתי מצגות עליהן התבססתי בהרצאה שנתתי בזמנו בביה״ס לצילום ״צילום בעם״. מאחר ולמצגות שכללתי בפוסטים הללו יש מספר מגבלות למי שמעונין ללמוד את החומר בעצמו חשבתי שיהיה זה נכון לכתוב סדרה של פוסטים מפורטים הרבה יותר וערוכים מחדש בנושא חשוב זה שהוא תמיד רלבנטי. למרות שבפוסט הקודם, מס׳ 76 התייחסתי לאפשרות שבעתיד נחזור בכלל להשתמש במערך של ״עדשות נקב״ במקום בעדשות אופטיות, אני סבור שעדיין יש לפנינו מספר שנים בהן נמשיך להשתמש בעדשות אופטיות רגילות כך שרצוי מאד לכל צלם לדעת ולהכיר את המאפיינים של העדשות בהן הוא משתמש. אז קחו נשימה עמוקה, זו הולכת להיות סדרה ארוכה ומעמיקה למדי.

סדרת הפוסטים הזאת תקיף את הנושאים הבאים:

חלק א, פוסט מס׳ 77:
1.  מצלמת הנקב ואבי האופטיקה
2.  שרשרת ההדמייה: נקב לעומת עדשה
3.  אורך מוקד, זווית ראייה ופרספקטיבה

חלק ב, פוסט מס׳ 78:
4.  סוגי עדשות והתאמתן לצרכים שונים

חלק ג, פוסט מס׳ 79:
5.  השפעת הצמצם וגורמים אחרים על עומק השדה בצילום

חלק ד, פוסט מס׳ 80:
6.  הקשר בין גודל החיישן ,זווית הראיה, הצמצם וה-ISO
7.  כושר ההפרדה של עדשות והקשר שלו לכושר ההפרדה של חיישני תמונה

חלק ה, פוסט מס׳ 81:
8.  סטיות של עדשות: סטייה צבעונית וסטייה כדורית

חלק ו, פוסט מס׳ 82:
9. סטיות של עדשות: קומה, אסטיגמטיזם, עיקום השדה ועיוות
10. נפילת אור בקצוות
11. בוקה

חלק ז, פוסט מס׳ 83:
12. MTF, מדד DxOMark לאיכות של עצמיות
13. שיקולים בבחירת עצמיות
14. מספר מחשבות על עצמיות בכלל…

מעט היסטוריה: עקרון ה- Camera Obscura,  הלשכה האפלה, עליו מבוססות כל המצלמות הקיימות כיום היה ידוע כבר במאה החמישית לפני הספירה. מלומדים סינים גילו שהאור נע בקווים ישרים ויצרו דמות הפוכה בעזרת נקב שריכז את האור ושימש כ״עדשה״.

Picture1

אולם לא היתה ידועה טכניקה המאפשרת קיבוע הדמות שנוצרה.

הראשון שהבין את האופטיקה של מצלמת הנקב היה Ibn Al Haithum  הידוע בשם Alhazen ונחשב כיום כ"אבי האופטיקה". הוא כתב במאה ה- 11 ספר בשם קיטאב אל מאנאזיר: כתבי האופטיקה. ספר זה, שנדחה ע"י העולם המערבי באותה עת הפך לטקסט המרכזי בתחום באירופה במשך כ- 400 שנה. אחד המכתשים על הירח נקרא על שמו כמו גם אחד האסטרואידים.  בעיראק בה נולד הונפק בתקופת סאדאם חוסיין שטר כסף הנושא את דיוקנו. פקחי האו"ם גילו גם מעבדת מחקר בתחום הנשק הכימי והביולוגי שנקראה על שמו…Picture2

בול דואר שהונפק בקאטאר לזכרו של Ebn Al Haitum הידוע גם כ- Alhazen

המילה Lens  מקורה בדמיון הפיסי שבין עדשה לעדשים (Lentiles). עדשות שימשו להדלקת אש וכזכוכית מגדלת כבר לפני כ- 2700 שנה במאה השביעית לפני הספירה באזור סוריה. האזכור הכתוב הקדום ביותר של עדשות מופיע במחזה של אריסטופנס משנת 421 לפנה"ס. שימוש המוני בעדשות החל ב-1286 כאשר  המשקפיים הומצאו, קרוב לוודאי באיטליה.

Picture3

שרשרת ההדמייה, תהליך יצירת הדימוי:

התהליך כולל 8 גורמים ושלבים:
1. מקור האור: שמש, נורת להט, מבזק, LED וכו'
2. העצם, נושא הצילום: אדם, חפץ, פרח, נוף וכו'
3. איסוף האור החוזר מן העצם (או עובר דרכו) באמצעות נקב, עדשה ו/או מראה
4. גילוי האור באמצעות גלאי: סרט צילום או חיישן תמונה אלקטרוני
5. עיבוד התמונה: כימי, אופטי, אלקטרוני, אלקטרוני-דיגיטלי
6. אחסון: על סרט הצילום, אלקטרוני-אנאלוגי, דיגיטלי
7. העברה: באופן פיסי-ידני, אלקטרוני-אנאלוגי, דיגיטלי
8. תצוגה: הדפסה, הקרנה, צג המחשב/טבלט/סמארטפון

32Lenses1

במצלמת נקב איסוף האור החוזר מן הנושא מתבצע ע״י הנקב: זוהי שרשרת הדמייה טיפוסית למצלמת נקב כאשר האור הנראה מוחזר מן הנושא, הנקב ממקד את האור מן הנושא על סרט הצילום הקולט את הפוטונים של האור. סרט זה מפותח בהמשך לצורך יצירת דימוי קבוע. למעשה, הנקב איננו אוסף אור אלא מסנן אור.

32Lenses2

ללא אמצעי לאיסוף האור החוזר מן הנושא לא נוכל לקבל דימוי שלו.

32Lenses4

תוספת נקב לשרשרת ההדמייה מספקת את הפתרון וכעת יש בידנו אמצעי לאיסוף האור ומיקודו על גבי סרט הצילום. אולם הדמות שנוצרה כהה… מה עושים?

32Lenses5

אפשר להגדיל את קוטר הנקב כדי שיעביר יותר אור ואז יתקבל דימוי בהיר יותר, אולם הדימוי יהיה מטושטש יותר.

32Lenses6

אפשרות טובה יותר תהיה להשתמש בעדשת זכוכית, המביאה את כל קרני האור מכל נקודה בנושא לנקודה אחת בדימוי.

32Lenses7

ואם נוסיף זכוכית מט במישור בו מתקבל הדימוי נוכל אפילו לראות את הדימוי עוד לפני רישומו על סרט הצילום. תוספת צמצם לפני העדשה יאפשר לנו לשלוט בכמות האור שתחדור לסרט הצילום. מה קיבלנו? מצלמה! ומכאן המעבר למבנה מצלמה מודרנית הינו פשוט:

32Lense8

מהי עדשה?

Slide16

עדשות קיימות במגוון צורות כאשר צורת העדשה קובעת את אופן שבירת האור. שני הסוגים העיקריים של עדשות הן עדשות קעורות, המפזרות את האור ועדשות קמורות, המרכזות את האור.

המאפיין המרכזי של עדשה הוא אורך המוקד שלה, המגדיר את המרחק ממנה בו יתמקד הדימוי הנוצר ע״י העדשה.

מעדשה לעצמית: עצמית היא אוסף של עדשות במארז אחד משולב באמצעים מכניים, חשמליים ואלקטרוניים המאפשרים (ברוב העצמיות המשמשות לצילום) תזוזה של העדשות השונות לצורך מיקוד ו/או שינוי אורך המוקד (בעצמיות  Zoom):

Picture4

Picture5

 

עצמית עשויה להיות קבועה (Fixed), כלומר מחוברת לגוף המצלמה באופן קבוע או מתחלפת (Interchangeable):

Picture6

דוגמא למצלמה בעלת עצמית קבועה שאיננה ניתנת להחלפה: Sony RX1

 

Picture7

דוגמא למצלמה שניתן להחליף לה עצמיות: Panasonic GF-1

עצמית עשויה להיות  בעלת אורך מוקד קבוע (Prime Lens) או משתנה (Zoom Lens):

Picture8

עצמית Zoom בעלת אורך מוקד משתנה 14.5-60 מ״מ

 

Picture9

אוסף של עצמיות בעלות אורך מוקד קבוע (Prime Lenses) באורכי מוקד של 20,25,35,50,85,135 מ״מ

 

Slide23

מחלקים את העצמיות לשלוש קבוצות עיקריות בהתאם לאורך המוקד:

Slide24

עצמיות נורמליות או סטנדרטיות הן אלו שאורך המוקד שלהן קרוב לאורכו של אלכסון החיישן. עצמיות רחבות הן אלו שאורך המוקד שלהן קצר יותר מאלכסון החיישן ואילו עצמיות טלפוטו הן אלו שאורך המוקד שלהן ארוך מאלכסון החיישן. אורך המוקד קובע את זווית הראייה של העצמית:

Slide25

Slide26

אורך המוקד קובע את זווית הראייה של העצמית ואת יחס ההגדלה, שהוא היחס בין גודל הנושא במציאות לבין גודל הדימוי על החיישן. יחס ההגדלה תלוי גם במרחק הנושא מן העצמית. להלן זווית הראייה של עצמיות באורכי מוקד שונים:

Slide27

Slide28

כך נראה אותו הנושא כאשר הוא מצולם במספר עצמיות באורכי מוקד שונים ומאותו המרחק:

Slide29

והנה דוגמא נוספת:

Slide30

  שימו נא לב לדוגמא הבאה, בה צולם פורטרט במספר עצמיות באורכי מוקד שונים. מרחק הצילום הותאם לאורך המוקד כך שגודל הפנים של המצולם נשאר כמעט קבוע ורק הרקע והיחס בינו לבין הנושא משתנים:

giphy

מקור: http://giphy.com

הקשר בין אורך המוקד, מרחק הנושא ומרחק הדימוי ניתן ע״י הנוסחאות הבאות:

Slide17

כאשר f=אורך המוקד של העדשה, 0=מרחק הנושא, i=מרחק הדימוי. נוסחה זו ידועה כ״נוסחת לוטשי העדשות״.

פרספקטיבה (Perspective):

פרספקטיבה מתייחסת ליחס בין האלמנטים השונים בדימוי הצילומי: מיקום האלמנטים, גודלם והחלל בינהם. במילים אחרות, הפרספקטיבה הינה אחד האמצעים החשובים בעיצוב הקומפוזיציה של הצילום, ומראה לצופה כיצד אלמנטים תלת מימדיים במציאות מיוצגים על דימוי דו ממדי. הפרספקטיבה נוצרת ע״י העצמית באופן אוטומטי אולם על הצלם להבין את המשמעות החזותית של המופעים השונים של הפרספקטיבה. קיימים מספר סוגים של פרספקטיבה: ליניארית (השינוי בגודל האלמנטים בדימוי בהתאם לגודלם והזווית בה קווים ומישורים מתחברים), ריבועית (Rectilinear): קווים ישרים בנושא מתקבלים ישרים בדימוי: רוב העצמיות הינן כאלה. עצמיות פנורמיות ועצמיות רחבות מאד כמו ״עין הדג״ (Fish Eye) גורמות לקווים ישרים בנושא להופיע כמתעגלים בדימוי ואז מתקבלת פרספקטיבה מעוותת. פרספקטיבה של נקודת המגוז (Vanishing Point Perspective) מתייחסת לתופעה שבה קווים מקבילים נראים כאילו הם נפגשים בנקודת המגוז. כאשר קווים מקבילים, אופקיים או אנכיים ניצבים לציר האופטי של העצמית נקודת המגוז תהיה באין סוף. קווים אחרים, שהינם מקבילים לציר האופטי של העצמית וכן כל הקווים המקבילים בכל זווית לציר העצמית יפגשו בנקודת מגוז מוגדרת. וכך קווים שהינם מקבילים לציר העצמית או כמעט מקבילים לו יתחילו בחזית הדימוי ויפגשו בנקודת מגוז בתוך הדימוי או בנקודת מגוז מדומה הנמצאת מחוץ לדימוי. פרספקטיבה של גובה: המקום בו בסיסו של אלמנט ממוקם על הקרקע בדימוי נותן לנו רמז לגבי מרחקו מן המצלמה. ככל שאלמנט נראה ממוקם גבוה יותר על פני הקרקע כך הוא רחוק יותר מן המצלמה. פרספקטיבה חופפת  (או פרספקטיבה של עומק): כאשר אלמנטים בדימוי הינם באותו קו הראיה, האלמנטים הקרובים יותר למצלמה יחפפו ויסתירו חלקית אלמנטים רחוקים יותר. ע״י כך נוצרת אצל  הצופה תחושה לגבי העומק והמרחק היחסי בין האלמנטים בדימוי. פרספקטיבה של הגודל הקטן:  אנחנו יודעים לזהות ולהעריך את גודלם של עצמים שונים בתמונה ולכן אם שני בני אדם נראים בגובה שונה מאד בדימוי ברור לנו שהקטן יותר נמצא רחוק יותר מן המצלמה מאשר הגדול יותר. באותו אופן אנו מעריכים את המרחק והגודל של עצמים מוכרים אחרים, כמו לדוגמא מכונית ואנייה.

Slide31

Slide32

יש בידנו כיום כלים חישוביים לשינוי הפרספקטיבה בדימויים כדוגמת כלי ה-  Upright ב- Lightroom.

בפוסט הבא נמשיך את הדיון בסוגי עצמיות והתאמתן לצרכים שונים.

עדכון 18.11.16: סרטון מצויין הממחיש היטב את הגורמים המאפיינים עצמיות תמצאו כאן

76. צילום חישובי: המנוע של מצלמות המחר, חלק ב

76. צילום חישובי: המנוע של מצלמות המחר, חלק ב

בפוסט הקודם  סקרתי את תחום הצילום החישובי ההולך וצובר תאוצה בשנים האחרונות.

בסרטון קצר המתאר את עקרונות שיטת הצילום החישובי, יתרונותיה ותוצאותיה ניתן לצפות כאן (הסרטון כולל חלק העוסק במתמטיקה שמאחורי המערכת, לא להתייאש, חכו לדוגמאות שבסיום).

אחד המופעים של צילום חישובי שכבר נמצא בשימוש בסמארטפונים הוא השימוש בשתי מצלמות (Dual Cameras): לסמארטפונים הכוללים טכנולוגיה זו יש שתי מצלמות אחוריות (שני חיישנים, שתי עדשות) המצלמות יחד, כל אחת מזווית מעט שונה מן השנייה. התוצאות המתקבלות משתי המצלמות מחושבות ע״י תוכנה  יעודית לדימוי אחד שהינו איכותי יותר מכל אחד מן הדימויים שיצרו אותו. חשוב לא לבלבל טכנולוגיה זו עם טכנולוגיה בעלת השם הדומה Dual Pixel המשמשת לצורך מיקוד אוטומטי ואין לה קשר לאיכות הדימוי עצמו.

בסרטון המתאר את עקרון הפעולה של טכנולוגיה זאת ניתן לצפות כאן

comparison-1השוואה בין צילום במצלמה אחת לבין שילוב שני צילומים משתי מצלמות יחד

בתחום זה בולטת חברת CorePhotonics הישראלית שהטכנולוגיה שלה מבוססת על מחקר שנערך באוניברסיטת תל אביב.

computational12

תהליך היצירה והעיבוד של דימוי הנוצר משתי מצלמות יחד
מקור: Corephotonics.com
 

corephotonics

השוואה בין שימוש בזום דיגיטלי במצלמה אחת רגילה לבין ביצוע זום דיגיטלי בדימוי שהתקבל משתי מצלמות.
מקור: Corephotonics.com

DSC_1437-2wf2wgux2lurhcbwev1zb4

כך נראה מודול Dual Camera: שתי מצלמות במארז אחד המיועד להרכבה בסמארטפון. מקור: Corephotonics

בתחילת החודש (מרץ 2016) הכריזה Corephotonics על שני מוצרים חדשים: HawkEye, מודול מצלמה לסמארטפון עם  13MP משולב עם מצלמה שנייה בת 13MP עם אופטיקה ״מקופלת״. חיבור חישובי של שני הצילומים מאפשר קבלת אפקט זום דיגיטלי מקביל לזום אופטי X5. לדברי החברה, יכולת הזום של מודול ה- HawkEye גבוהה מזו של חיישן עם  130MP והאופטיקה המקופלת מביאה את המודול לגובה של 5.4 מ״מ בלבד. המודול כולל גם ייצוב אופטי לצילום סטילס וצילום וידאו כאחד. בנוסף לכך הכריזה Corephotonics  על מודול מצלמה כפולה המשלב חיישן לצילום בצבע עם חיישן נוסף לצילום מונוכרומטי לצורך שיפור הביצועים בעת צילום בתנאי אור גרועים. לדברי החברה, מודול זה מספק קבצים בעלי  21MP שהינם בעלי רזולוציה ורמת רעש טובה יותר מכל מצלמת סמארטפון אחרת בעלת אותו מספר פיקסלים.

כעת לא נותר לנו אלא להמתין ולראות אלו יצרני סמארטפונים יאמצו את הטכנולוגיה המענינת של  Corephotonics בדגמים הבאים של מוצריהם.

כבר בשנת 2014 היציגה חברת HTC את הסמארטפון מדגם (HTC One (M8 שכלל מצלמה רגילה ומצלמה נוספת שנועדה לשפר את מימד העומק של הצילומים. טכנולוגיה זו איננה קשורה לזו של Corephotonics.
סקירה של האפשרויות המענינות הגלומות בסמארטפון של HTC תוכלו לקרוא כאן.

עוד חברה ישראלית העוסקת בפיתוח מצלמות כפולות היא LinX שנרכשה לפני כשנה ע״י Apple תמורת כעשרים מליון דולר. מכאן מסיקים אנליסטים שבכוונת Apple לשלב את טכנולוגיית המצלמות הכפולות בדגמים הבאים של הסמארטפונים שלה. גם המצלמות החישוביות של LinX מסוגלות להפיק דימויים עם מידע לגבי העומק ודימויים תלת ממדיים. השמועות מספרות על כך שמייסד Apple, סטיב ג׳ובס ע״ה התענין בזמנו בטכנולוגיה של Lytro שסקרתי בפוסט הקודם אולם הדבר לא הבשיל לכדי שיתוף פעולה מעשי.

linxcameras-100579945-primary.idge

מערכי מצלמות כפולות ומרובעות של LinX

התחזית היא שמצלמות כפולות יכללו כבר בדגמי הסמארטפונים הבאים של היצרניות המובילות Samsung ו-Apple (הדגם האחרון של Samsung Galaxy S7 שהוצג בחודש שעבר כולל רק מצלמה אחורית אחת). ואם השמועות נכונות הרי שגם חב׳ Wuawei  הסינית עומדת להכריז בקרוב על דגם חדש של סמארטפון בעל Dual Camera שפותח בשיתוף פעולה עם Leica. עדכון 4.4.16: כנראה שאכן יוצג בקרוב מאד סמראטפון כזה, מדגם P9.

בסרטון קצר המתאר את המצלמה הכפולה שאולי תהיה ב- iPhone 7 ניתן לצפות כאן.

במצגת מפורטת על טכנולוגיית המצלמות הכפולות ניתן לצפות כאן.

חברת  הזנק (Start Up)  נוספת העוסקת בתחום הצילום החישובי היא חברה קטנה מקנדה בשם Algolux. המוצר העיקרי של החברה הוא מנוע חישובי הנקרא:
CRISP: Computationally Reconfigurable Image Signal Platform שם קצת ארוך ומסורבל מידי לטעמי אבל אנסה לתרגם אותו: מערכת עיבוד תמונה הניתנת לתכנות מחדש. הכוונה לתחליף למערכות הליניאריות הקיימות, המטפלת רק בקובץ ה- RAW המקורי ולא בנגזרות JPEG שלו שעברו שורה של עיבודים ברצף. ע״י כך ניתן להפחית באופן משמעותי טעויות חישוביות הבאות לידי ביטוי כרעש בדימוי הסופי. עפ״י הדוגמאות המוצגות באתר החברה התוצאות מרשימות. החברה רואה ב- CRISP מסגרת חישובית גמישה הניתנת לשילוב עם מגוון רחב של חומרה ותוכנה קיימים, הכוונה היא שיצרני החומרה ישלבו את מערכת CRISP במוצריהם במקום המערכות הקיימות לעיבוד תמונה.

CRISP

מערכת CRISP משלבת בין חומרה מכל סוג (מעבדים, עדשות וחיישנים) לבין תוכנת העיבוד

הנה שתי דוגמאות ליכולות העיבוד החישוביות של המערכת של Algulux:

algoluxtackl

דוגמא לפעולת Virtual Deblurring: תיקון טשטוש הנגרם כתוצאה מתזוזת המצלמה ו/או הנושא בעת הצילום

CRISP Denoise

דוגמא לפעולת Burst Denoise: הסרת רעשים תוך כדי הצילום

הרעיון הכללי הוא למצב את מערכת CRISP כיחידת עיבוד תקנית אותה ניתן יהיה לשלב בחומרה של יצרנים רבים. כיום לכל יצרן תהליך עיבוד משלו. Algolux מצפים שיחידת העיבוד שלהם תאומץ ע״י יצרני חומרה שבתורם יוכלו להרכיב בסמארטפונים (ובהמשך גם במצלמות אחרות) חומרה פשוטה וזולה יותר. הדימויים הלא איכותיים שיווצרו ע״י חומרה זו ישופרו בהרבה ע״י המערכת החישובית כך שאיכותו של הדימוי הסופי יהיה מקביל לדימוי שהתקבל מחומרה איכותית (ויקרה) בהרבה.

Computational-Cameras-for-one-pager-1024x576

תחזית לחדירת המצלמות החישוביות לשוק הסמארטפונים

ראיון עם מייסד Algolux  ניתן לקרוא כאן.

מצלמה חישובית נוספת שלוקחת את הצילום החישובי למחוזות רחוקים אף יותר היא Flatcam. אם Algolux מקדמת את הקונספט של אופטיקה זולה משולבת בתוכנת עיבוד חזקה הרי ש-Flatcam מוותרת על עדשות קונבנציונליות לחלוטין וחוזרת, לא להאמין, ל״עדשות״ הנקב מתקופת ה- Camera Obscura. הקונספט פותח ע״י קבוצת מחקר באוניברסיטת Rice בארה״ב. את המרת הדימוי הלא איכותי המתקבל מעדשות נקב מבצעים, כמובן, באמצעות מערכת חישובית מיוחדת.

FlatCam הינה מצלמה דקה מאד, חסרת עדשה (Mirrorless כבר יש לנו, אז הנה לכם מושג חדש: Lensless camera…) הכוללת מסיכה מקודדת (אוסף של עדשות נקב) הצמודה לחיישן תמונה קונבנציונלי. בניגוד למצלמות בעלות עדשות, בהן דימוי הנושא נקלט ישירות  ע״י הפיקסלים בחיישן, כל פיקסל ב-FlatCam רושם צירוף ליניארי של אור ממספר אזורים בנושא. אלגוריתם חישובי משמש לצורך הפרדת המידע שנרשם ובנייה מחדש של דימוי הנושא.
FlatCam הינה דוגמא למערכת הדמייה בעלת מפתח (Aperture) מקודד. השוני לעומת מערכות דומות הוא שהמסיכה המקודדת נמצאת בצמידות גבוהה לחיישן עובדה המאפשרת יצירת מערכת הדמייה דקה מאד. בנוסף, במשולב עם חיישנים בעלי שטח פנים גדול יעילות איסוף האור של המערכת הינה גבוהה מאד. תכונות אלו מתאימות להבניית המצלמה לתוך משטחים גדולים וחומרים גמישים כמו טפטים לציפוי קירות ובגדים להם נדרשים חומרים דקים, גמישים וקלים. מידת השטיחות של המצלמה נמדדת עפ״י היחס בין עובייה לבין רוחבה (Thickness to Width Ratio, TWR). במצלמות קונבנציונליות העובי הוא באותו סדר גודל של רוחב החיישן, וה- TWR הוא בערך 1. מצלמות כאלו סובלות מחסרון רציני: אם נקטין את עובי המצלמה בסדר גודל אחד תוך שמירה על יחס העובי לרוחב שטח הפנים של החיישן יקטן בשני סדרי גודל ובהתאם תהיה ירידה משמעותית ביעילות איסוף האור שלו (רעש גבוה). לעומת זאת, FlatCam נהנית מיחס עובי לרוחב שאינו משתנה: עובי ההתקן הוא בסדר גודל קטן יותר מרוחב החיישן ולכן יעילות איסוף האור של החיישן גבוהה וגם הצמצם המספרי המירבי האפשרי מאפשר העברת כמות אור גבוהה יותר מאשר במערכות רגילות.
בשלב זה FlatCam סובלת ממגבלת רזולוציה (כושר הפרדה) נמוכה, שהיא אחת התוצאות של קירוב המסיכה בעלת עדשות הנקב לפני החיישן. כמו כן, כתוצאה מתהליך הפרדת המידע (Demultiplexing) נוצר רעש שפוגע גם הוא בכושר ההפרדה. אולם, מפתחי המערכת עובדים על שיפור ביצועיה וסביר להניח שנראה את התוצאות בעתיד הלא רחוק.

בסרטון המתאר את פעולת המערכת אפשר לצפות כאן.

lensless

השוואה בין המאפיינים של מצלמת נקב רגילה, מצלמה עם עדשה רגילה ומצלמה מבוססת מסיכה

PreviewScreenSnapz001

תהליך הצילום ב- FlatCam: כל מקור אור בתוך שדה הראייה של המצלמה תורם אור לכל פיקסל על החיישן וכך נוצר דימוי מורכב של הנושא. אלגוריתם חישובי מרכיב מחדש את דמות הנושא.
מקור: Rice University

PreviewScreenSnapz002

תוצאות של אב טיפוס של ה- FlatCam, המורכב (a) מחיישן Sony ICX285 עם מסיכה מקודדת במרחק של 0.5 מ״מ מן החיישן. מן החיישן מתקבלים צירופים ליניאריים שונים של אור מנקודות שונות בנושא (b), דימויים צבעוניים  ברזולוצייה של 512X512 פיקסלים שהורכבו מחדש ע״י עיבוד של כל ערוץ צבע בנפרד (c).
מקור: Rice University

מתי נוכל לרכוש מצלמות דקות ושטוחות כאלו? לא מחר, זה בטוח. סביר להניח שתהליך הפיתוח של טכנולוגיה מענינת זו יימשך עוד תקופה לא קצרה. אבל הבה נזכור שגם התוצאה שהתקבלה מן המצלמה הדיגיטלית הראשונה בשנת 1975 לא נראתה טוב יותר… הרשו לי להמר שהפעם התהליך יהיה קצר יותר.

מאמר כללי על צילום חישובי ניתן לקרוא כאן.

לסיכום, אין ספק שהצילום החישובי כבר כאן, והמצלמות העתידיות אולי יכללו Dual Camera המבוססת על FlatCam, ללא עדשות ועם מערכת עיבוד שתאפשר קבלת דימויים תלת ממדיים, שינויי עומק שדה לאחר הצילום, שינוי ה- Bokeh ועוד ועוד. יהיה מענין, כבר אמרתי? וכן, עדיין יהיה צורך בצלם שיפעיל את כל הטכנולוגיה הזו באופן שיווצר דימוי משמעותי מבחינה חזותית, נא לא לדאוג…

מקור תמונה ראשית:
http://spie.org/newsroom/technical-articles/5106-analyzing-computational-imaging-systems

עדכון 10.5.18: מערכת (AI (Artificial Inteligence הלומדת לטפל בצילומים שצולמו בתנאי אור  קשים. התוצאות מדהימות!

עדכון 6.8.18: מאמר מענין בנושא הצילום החישובי

עדכון 19.3.20: מאמר מענין מבית DXOMARK המשווה בין היכולות של מצלמות DSLR ו-Mirrorless לבין אלו של טלפונים סלולריים, כולל פרספקטיבה היסטורית מפורטת

עדכון 7.6.20: מאמר מענין ומפורט בנושא הצילום החישובי, חלק א באתר DPReview

עדכון 8.6.20: חלק ב של המאמר הנ״ל

עדכון 9.6.20: חלק ג של המאמר הנ״ל

75. צילום חישובי: המנוע של מצלמות המחר, חלק א

75. צילום חישובי: המנוע של מצלמות המחר, חלק א

למרות כל הדיבורים על ״מהפכה טכנולוגית״ בהקשר של הצילום הדיגיטלי הרי שפועל לא הרבה השתנה מאז המצאת הצילום בסוף שנות ה-30 של המאה ה-19. אם תשוו את המבנה של מצלמה בת 100 למצלמה מן הדור האחרון תוכלו למצוא הרבה דמיון בין שתי המצלמות: הצלם לוחץ על כפתור המחשף, האור החוזר מן הנושא חודר לעדשה, עובר דרך הצמצם ומגיע למשטח רגיש לאור עליו הוא נרשם כאשר משך החשיפה נקבע באמצעות מהירות התריס. נכון, עד תחילת שנות ה-2000 רישום האור נעשה על גבי סרט צילום מבוסס כסף הלידי ולאחר הצילום היה צורך לפתח את הסרט בתהליך כימי  כדי לקבל תמונה שניתן להשתמש בה. כיום, ברוב המקרים, רישום האור נעשה על גבי חיישן תמונה אלקטרוני מבוסס סיליקון הממיר את האור לאנרגיה חשמלית שכמותה נמדדת ומומרת לביטוי בינארי-דיגיטלי (ספרתי) המבוסס על שני הסימנים 0 ו-1. אנו משתמשים כיום באמצעים מדוייקים למדידת החשיפה ולמיקוד אוטומטי עליהם יכלו אבותינו רק לחלום לפני 100 שנה ובמאה ה-19 אפילו לא היו מסוגלים לחלום על כך… אנו משתמשים בטכנולוגיות לעיבוד תמונה ספרתי ובתקשוב כדי לשפר את הצילומים שלנו ולהעבירם בקלות לכל קצוות תבל. וכן, אנחנו גם מתחילים לראות את הניצנים הראשונים של יכולת המצלמה להבין ולפענח את המשמעות של האור הנרשם על גבי חיישני התמונה. וביכולת זאת טמונה, כך נראה, המהפכה הטכנולוגית הבאה בתחום הצילום. מהפכה זו נקראת בשם המפחיד ״צילום חישובי״ (Computational Photography), היא מבוססת על תוכנה מתקדמת שמסוגלת לקלוט מידע מקורי באיכות לא אופטימלית ולהפוך אותו, באמצעים חישוביים למידע איכותי בהרבה והיא מסוגלת לאפיין את האור ולהפיק ממנו מידע רב ערך.
לאט לאט, אולי מבלי ששמנו לב לכך חדרה טכנולוגיה זו לחיינו ונמצאת כבר, ברמה מסויימת, בכל סמארטפון. כידוע מערכת המצלמה המובנית בסמארטפון איננה מן המשובחות ביותר משתי סיבות עיקריות: עלות וגודל. לכן נדרשת מערכת תוכנה שתשפר את איכות הצילומים שנוצרו ע״י החומרה הלא אופטימאלית ויגרמו לה ״ליצור״ צילומים שכאילו נוצרו ע״י חומרה יקרה בהרבה. הטכנופובים שביננו יצייצו מיד שזהו סופו של הצילום מאחר והתוכנה תוציא את הצלם מן המשוואה, אבל זה נאמר כבר הרבה פעמים בעבר ובינתיים לא ממש התממש…

עפ״י וויקיפדיה, צילום חישובי מתייחס לטכניקות צילום ועיבוד תמונה המתבססות על חישובים ספרתיים במקום על תהליכים אופטיים. צילום חישובי יכול לשפר את היכולות של מצלמה או להוסיף תכונות שלא היו קיימות כלל בצילום אנאלוגי או אף צילום דיגיטלי בסיסי  ולהפחית את העלות, הגודל והמשקל של רכיבי המצלמה. דוגמאות מוכרות לכך כוללות חישוב של פנורמות וצילומי HDR, בשני המקרים החישוב מאפשר להתגבר על היכולות המוגבלות של הרכיבים הפיסיים של המצלמה על מנת ליצור צילום משוכלל יותר. דוגמא פחות מוכרת היא הטכנולוגיה הנקראת Light Field המאפשרת הפקת מידע תלת מימדי (עומק) שאיננו קיים בצילום דו ממדי רגיל כדוגמת המצלמות של Lytro ואחרים. מידע זה מאפשר, לאחר הצילום, קביעה של עומק שדה סלקטיבי ללא תלות בצמצם הפיסי בו צולמה התמונה כמו גם הפקת דימויים תלת ממדיים.

ההגדרה למושג ״צילום חישובי״  כוללת כיום מספר נושאים כמו גרפיקה ממוחשבת, ראייה מוחשבת ואופטיקה חישובית. בנוסף יש לה צד מוכר ונפוץ יותר העוסק בעיבוד ממוחשב של צילום דו ממדי דיגיטלי הנתפס כיום כמובן מאליו ומאפשר, בין היתר הקטנה והגדלה של דימויים, דחיסת טווח בהירויות, ניהול צבע, דחיסה, ריטוש וסימון דיגיטלי ועוד. כן כלולים בתחום עיבוד התמונה הספרתי המוכר אפקטים ״אמנותיים״ באמצעות פילטרים למינהם.
דוגמא נוספת היא התחום הנקרא תאורה חישובית (Computational Illumination): צילום בתאורה נתונה ולאחר מכן עיבוד של הדימוי ליצירת דימוי חדש. בין היתר תחום זה כולל יצירת תאורה חדשה (כולל שילוב של מספר צילומים של אותו הנושא כאשר כל אחד צולם בתאורה אחרת), שיפור הדימוי, ביטול טשטוש (Image Deblurring) שאינו פעולת חידוד רגילה וגם איננה קשורה למערכת ייצוב פיסית, שינויים גיאומטריים, השלמת פרטים חסרים ועוד. גם טכניקת HDR משתייכת לתחום זה.
deblur4a

ביטול טשטוש הנובע מתנועת הנושא ו/או המצלמה בזמן החשיפה
מקור: http://www-rohan.sdsu.edu

אז מה יש לנו כיום?

כאשר אנו מצלמים במצלמה שלנו, ללא קשר לסוג המצלמה, קובץ ה-RAW שנוצר עובר שורה של כוונונים. לאחר פעולת ה- Demosaicing מופעלות פעולות להפחתת רעשים, חידוד, ביטול טשטוש ועוד פעולות בהתאם לבחירת הצלם. התוצאה היא קובץ JPEG. איכות תוצאות העיבוד עולה בהתמדה אולם יש גבול ליכולות של התוכנה הנוכחית. כל פעולה כנ״ל מבוצעת בד״כ ע״י טכנולוגיה עצמאית ונפרדת. כתוצאה מכך כל תוכנה בודקת אוסף שלם של פרמטרים לפני תחילת הפעולה וכמות המידע המשותפת בין הישומים השונים קטנה. מגבלה נוספת נובעת מאופיו הליניארי של התהליך: כל יישום מקבל את התוצאה של היישום הקודם וכתוצאה מכך שגיאות ורעשים מתווספים לדימוי בכל שלב ושלב. עם כל זאת, יש לומר עם יד על הלב שהתוצאות המתקבלות כיום מכל סוגי המצלמות (כמובן יש להביא בחשבון את מאפייני החיישנים והעדשות ) הן מרשימות ביותר. אולם בעתיד של כולנו נראים צילומים איכותיים אף יותר. מספר קבוצות מחקר ופיתוח בעולם עובדות קשה על הדור הבא של עיבוד התמונה וכבר ניתן לראות בשוק ניצנים ראשונים של מאמצים אלו.

ConventionalPipeline

איור המתאר את תהליך היצירה והעיבוד הנוכחיים של דימויים במצלמות דיגיטליות. מקור: Algolux.com

ומה צופן לנו העתיד?

כתבתי כבר בפוסט מס׳ 51 על הטכנולוגיה המענינת של Light:  מדובר בשילוב של מספר טכנולוגיות שונות: למצלמה 16 עדשות שונות באורכי מוקד שונים ולפני כל אחת מהן נמצא חיישן קטן. כך שלמעשה מדובר על מארז קומפקטי הכולל 16 מצלמות, 10 מהן מצלמות בבת אחת בעת לחיצה על כפתור המחשף. החידוש הנוסף הוא תוכנה חדשנית התופרת את 10 הצילומים ויוצרת קובץ בעל רזולוציה מירבית של 52 מגפיקסלים.
Light מציגה את ה- L16 כ״מצלמה המאפשרת שליטה ובקרה נרחבות כמו של DSLR עם הנוחות של סמארטפון״. ובנוסח אחר: ״L16 הינה המצלמה החישובית מרובת המיפתחים (Apertures) הראשונה המספקת איכות ויכולות של  DSLR במכשיר הניתן לנשיאה בכיס. זוהי מצלמה קטנה יותר, זולה יותר המספקת איכות תמונה טובה יותר מאשר כל מצלמה אחרת בתחום המחיר שלה״. שימו לב לביטוי ״מצלמה חישובית״, המעיד על כך שאיכות הדימוי המתקבל נובעת בחלקה הגדול מפעולה של תוכנה ולא מפעולה של חומרה.

home_07_hero

המצלמה החישובית של Light הכוללת 16 מצלמות במארז אחד. מקור: Light.com

גם מצלמת ה-Lightfield של  Lytro עשתה הרבה גלים בזמנו, עברה הסבה זריזה מדגם שהיה בגדר צעצוע לדגם ״מקצועי״ במחיר של $1300 שככל הידוע לי איננו מהוה להיט מכירות. נראה שהיכולת לשנות את עומק השדה לאחר הצילום אינו גורם איכות המושך, נכון להיום את רוב המשתמשים, ואילו ביצועי המצלמה רחוקים מלספק את הדרישות של צלמים מקצועיים.

C-LYTRO-ILLUM-NOV-2014_grandeLytro Illum  , מתוך אתר היצרן

דוגמא נוספת ל״מצלמות עתיד״ שלא כל כך הפכו בינתיים לכאלה הן מצלמות התוסף לסמראטפון כמו המצלמה של  DxO אותה סקרתי בפוסט מס׳ 35 וכן פתרונות דומים של Sony ושל  Olympus.

Lytro הכריזה לאחרונה על מצלמה חישובית בעלת יכולות מענינות: יצירת סרטים VR תוך התבססות על מומחיותם בתחום ה- Light Field וטכנולוגיות צילום חישובי נוספות. זוהי מערכת המיועדת לשוק המקצועי של הפקות הקולנוע והטלוויזיה, עלותה גבוהה מאד והיא כוללת גם שרת עוצמתי ויעודי לביצוע החישובים המורכבים הנדרשים. אולם מניסיון העבר ניתן לנבא כי בהמשך יהיה ניתן להבנות לפחות חלק מיכולות אלו גם בתוך אמצעים קטנים, פשוטים וזולים הרבה יותר. סמארטפון כבר אמרנו? בסרטון המדגים אל יכולות הטכנולוגיה ניתן לצפות כאן. בסקירה מקיפה של התחום המתפתח של הקולנוע מבוסס המציאות המדומה שהתפרסמה במוסף גלריה של עיתון הארץ אומר הבמאי והעתידן האמריקאי ברט לנארד: ״בתי הקולנוע המסורתיים יילכו וידחקו אל השוליים לטובת בתי קולנוע עתידניים שיציגו סרטי  VR״. כמו כן הוא אומר ש״הצילום כפי שאנו מכירים אותו ייעלם מן העולם כליל ויפנה את מקומו לטכנולוגיית שדה האור, הוא מעריך. ואילו זו, בזכות יכולתה להנציח מציאות באופן הדומה מאוד לצילום, תאפשר ליצור מציאות מדומה שתיצור תחושה אמיתית מאוד, ממש כמו בסרטים מצולמים. המראה שלה יהיה ריאליסטי לחלוטין, כמו עולם מצולם ותלת-ממדי ב- 360 מעלות, אבל היא תהיה ממוחשבת, בדיוק כמו אנימציה בתלת ממד ולכן תאפשר לצופים לנוע בתוכה בחופשיות״.

Lytro-Immerge-professional-lightfield-solution-for-cinematic-VR-camera

מצלמה מדגם Lytro Immerse המיועדת, כדברי היצרן: For the next generation of immersive storytelling

מבין החברות הרבות העוסקות בתחום ה- VR בולטת Facebook, שרכשה לפני כשנתיים (במחיר של כשני מיליארד דולר) את חב׳ Oculus, שהמוצר העיקרי שלה, משקפי VR מדגם Rift אמור לצאת לשוק במחיר של $600 החודש. כמו כן הכריזה Facebook על הקמת צוות מחקר ופיתוח בתחום ה- VR החברתי.

בחלק ב של פוסט זה אדון במערכת צילום כפולת מצלמות Dual Camera, במערכת החישובית של Algolux, חברה קנדית המפתחת ״מנוע״ חישובי יעודי למצלמות עתידיות ובמצלמה השטוחה FlatCam המפותחת באוניברסיטת Rice.

 

עדכון 7.6.20: מאמר מצויין ומפורט על הצילום החישובי, חלק א, באתר DPReview

עדכון 8.6.20: חלק ב של המאמר הנ״ל

עדכון 9.6.20: חלק ג של המאמר הנ״ל